| 摘要: | 
	         
			 
		     | 本文研究了一类重要的形如F=α +εβ +β arctan(β/α) (ε为常数)的弱Berwald (α, β)-度量.利用S-曲率公式,获得了这类度量为弱Berwald度量的充要条件.并且还证明了F为具有标量旗曲率的弱Berwald度量当且仅当它们为Berwald度量且旗曲率消失. | 
	         
			
	         
				| 关键词:  (α,β)-度量  弱Berwald度量  旗曲率 | 
	         
			 
                | DOI: | 
           
            
                | 分类号:O186.14 | 
             
			 
             
                | 基金项目:Supported by National Natural Science Foundation of China (10971239); Natural Science Foundation of Guizhou Province (JLKZ201201). | 
             
           | 
           
                | ON A CLASS OF WEAK BERWALD (α, β)-METRICS | 
           
           
			
                | 
				
				JIANG Jing-nong1, CHENG Xin-yue2
						
				
				 | 
           
           
		   
		   
                | 
				
				1.Department of Medical Information Engineering, Zunyi Medical College, Zunyi 563000, China;2.School of Math. and Statistics, Chongqing University of Technology, Chongqing 400050, China
				
				 | 
           
		   
             
                | Abstract: | 
              
			
                | We study an important class of weak Berwald (α, β)-metrics in the form F=α + εβ + β arctan(β/α) (ε is a constant) on a manifold. By using a formula of the S-curvature, we obtain sufficient and necessary conditions for such metrics to be weak Berwald metrics. We also prove that F is a weak Berwald metric with scalar flag curvature if and only if it is a Berwald metric and its flag curvature vanishes. | 
            
	       
                | Key words:  (α, β)-metric  weak Berwald metric  flag curvature |