| 摘要: | 
	         
			 
		     | 本文研究了一类多分支自相似集的自仿嵌入.利用压缩映射的不动点,在一定条件下,证明了若一个自相似集能自仿嵌入到另一个自相似集中,则它们对应的迭代函数系的压缩比满足某种代数性质. | 
	         
			
	         
				| 关键词:  自仿嵌入  自相似集  吸引子 | 
	         
			 
                | DOI: | 
           
            
                | 分类号:O186.5 | 
             
			 
             
                | 基金项目:Supported by National Natural Science Foundation of China (11101169). | 
             
           | 
           
                | AFFINE EMBEDDINGS OF SELF-SIMILAR SETS WITH MULTI-BRANCHES | 
           
           
			
                | 
				
				HUANG Ran-ran1, Yang Ya-min2
						
				
				 | 
           
           
		   
		   
                | 
				
				1.School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China;2.College of Sciences, Huazhong Agriculture University, Wuhan 430070, China
				
				 | 
           
		   
             
                | Abstract: | 
              
			
                | In this paper, we consider the affine embeddings of a class of self-similar sets with multi-branches. By applying the fixed point of the contractive mapping, we show that under certain circumstances, if a self-similar set can be affinely embedded into another one, then their contractive ratios of the corresponding IFS must satisfy some arithmetric conditions. | 
            
	       
                | Key words:  affine embeddings  self-similar set  attractor |