|
摘要: |
本文研究了三维稳态Navier-Stokes-Poission方程的Liouville型定理.利用能量方法,证明了如果光滑解(ρ,u,Φ)满足一些合适的条件,则u=0.本文的结果推广了Chae的结果(Nonlinearity,2012,25(5):1345-1349)到Lorentz空间. |
关键词: Navier-Stokes-Poission方程 Liouville型定理 Lorentz空间 |
DOI: |
分类号:O175.29 |
基金项目:国家自然科学基金资助(12201491),陕西省教育厅科研计划项目资助(22JK0475),榆林市科技局产学研项目资助(CXY-2022-76),榆林学院博士科研启动基金项目资助(21GK07). |
|
A LIOUVILLE TYPE THEOREM FOR THE 3D STATIONARY NAVIER-STOKES-POISSION EQUATIONS |
LI Zhou-yu,CUI Mei-ying
|
Abstract: |
In this paper, we study Liouville type theorem for the 3D stationary Navier-Stokes-Poission equations. Based on energy method, we prove that if a smooth solution (ρ, u, Φ) satisfies some suitable conditions, then u = 0. Our result extends and generalizes the corresponding result of Chae (Nonlinearity, 2012, 25(5): 1345-1349) to the Lorentz space. |
Key words: Navier-Stokes-Poission equations Liouville type theorem Lorentz space |