| 摘要: | 
	         
			 
		     | 本文研究了求解加权线性互补问题的光滑牛顿法.利用一类光滑函数将加权线性互补问题等价转化成一个光滑方程组,然后提出一个新的光滑牛顿法去求解它.在适当条件下,证明了算法具有全局和局部二次收敛性质.与现有的光滑牛顿法不同,我们的算法采用一个非单调无导数线搜索技术去产生步长,从而具有更好的收敛性质和实际计算效果. | 
	         
			
	         
				| 关键词:  加权线性互补问题  光滑牛顿法  全局收敛  二次收敛 | 
	         
			 
                | DOI: | 
           
            
                | 分类号:O221.1 | 
             
			 
             
                | 基金项目:河南省自然科学基金项目(222300420520)和河南省高等学校重点科研项目(22A110020). | 
             
           | 
           
                | A NEW NON-MONOTONE SMOOTHING NEWTON METHOD FOR SOLVING WEIGHTED LINEAR COMPLEMENTARITY PROBLEMS | 
           
           
			
                | 
				
				HE Xiao-rui, TANG Jing-yong
						
				
				 | 
           
           
		   
		   
                | 
				
				College of Mathematics and Statistics, Xinyang Normal University, Henan 464000, China
				
				 | 
           
		   
             
                | Abstract: | 
              
			
                | In this paper, we investigate the smoothing Newton method for solving the weighted linear complementarity problem. By using a class of smoothing functions, we reformulate the weighted linear complementary problem as a system of smooth equations and then propose a new smoothing Newton method to solve it. Under suitable conditions, we prove that the algorithm has global and local quadratic convergence. Different from current smoothing Newton-type methods, our method uses a non-monotone derivative-free line search technique to generate the step size, which makes it have better convergence properties and practical calculation effects. | 
            
	       
                | Key words:  weighted linear complementary problem  smoothing newton method  global convergence  quadratic convergence |