| 摘要: |
| 本文研究了E-凸函数在Gateaux可微条件下Gateaux导数与E-次微分之间的关系,获得了E-凸规划问题最优解的必要条件.给出了E-凸规划问题的最优解集刻画. |
| 关键词: E-凸函数 E-凸规划 Gateaux可微 解集刻画 |
| DOI: |
| 分类号:O221.2 |
| 基金项目:重庆市基础科学与前沿技术研究重点项目基金资助(cstc2015jcyjBX0029);最优化与控制省部共建教育部重点实验室;重庆市高等学校巴渝学者特聘教授项目资助. |
|
| CHARACTERIZATION OF THE SOLUTION SET OF E-CONVEX PROGRAMMING WITH GATEAUX DIFFERENTIAL |
|
LI Jun, PENG Jian-wen, LIU Xue-wen
|
|
School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
|
| Abstract: |
| In this paper, we study the relation between the Gateaux differential of E-convex function and the E-differential, and obtain the necessary condition for the optimal solution of E-convex programming problems. According to these two conclusions, the optimal solution set characterization of E-convex programming problem is shown. |
| Key words: E-convex function E-convex programming Gateaux differential Characterization of solution set |