| 本文已被:浏览 2285次 下载 3400次 |
 码上扫一扫! |
|
|
| 非线性微分-差分方程的解 |
|
张石梅1, 龙见仁1,2,3, 吴秀碧1,4
|
|
1.贵州师范大学数学科学学院, 贵州 贵阳 550001;2.北京邮电大学计算机学院;3.理学院, 北京 100876;4.贵州大学数学与统计学院, 贵州 贵阳 550025
|
|
| 摘要: |
| 本文研究了非线性微分-差分方程f(z)n+an-1f(z)n-1+…+a1f(z)+q(z)eQ(z)f(k)(z+c)=P(z)的有穷级非零整函数解的增长性和零点分布问题.利用微分-差分Nevanlinna值分布的方法,获得了当方程的系数满足一定条件时,方程解的增长性估计和零点分类.特别地,当n=2,a1≠0指数多项式解满足某些条件时,获得了解具有特别的形式.该结果推广了先前文献[1,2]的结果. |
| 关键词: 微分-差分方程 指数多项式 有穷级 |
| DOI: |
| 分类号:O174.5 |
| 基金项目:国家自然科学基金资助(11501142;11601100);贵州省科学技术基金资助(黔科合J字[2015]2112号);贵州师范大学2016年博士科研启动项目资助;2016年度贵州省“千”层次创新型人才项目资助. |
|
| SOLUTIONS OF NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS |
|
ZHANG Shi-mei1, LONG Jian-ren1,2,3, WU Xiu-bi1,4
|
|
1.School of Mathematical Science, Guizhou Normal University, Guiyang 550001, China;2.School of Computer Science;3.School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;4.School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China
|
| Abstract: |
| In this paper, we study the growth and distribution of zeros of entire solutions of finite order of nonlinear differential-difference equation f(z)n+an-1f(z)n-1+…+a1f(z)+q(z)eQ(z)f(k)(z+c)=P (z). By using the differential-difference Nevanlinna values distribution theory, we obtain an estimation of the growth and the distribution of zeros of solutions of the differential-difference equation if there are some attached condiction on the coefficients. Particularly, when n=2 and a1≠0, we obtain that exponential polynomial solutions satisfying some condictions must reduce to rather specific forms, which improves the results of [1, 2]. |
| Key words: differential-difference equation exponential polynomial finite order |