|
摘要: |
本文研究了一类次线性算子及其交换子在齐型空间上的弱有界性的问题.利用齐型空间的基本性质以及给出的一类次线性算子及其分别与BMO函数,Lipschitz函数生成的交换子在Lp(X)上的弱有界性,证明了其在齐型空间上Morrey-Herz空间中的弱有界性.推广了该类算子在Morrey-Herz空间中的强有界性这一结果. |
关键词: 齐型空间 弱Morrey-Herz空间 次线性算子 交换子 BMO空间 Lipschitz空间 |
DOI: |
分类号:O174.2 |
基金项目:国家自然科学基金资助(11161042);安徽省高校自然科学项目基金资助(KJ2011A138)和(KJ2012Z129) |
|
BOUNDEDNESS OF FRACTIONAL SUB-LINEAR OPERATORS AND ITS COMMUTATORS ON WEAK MORREY-HERZ SPACES ON HOMOGENEOUS SPACE |
WANG Li-juan
|
Abstract: |
In this paper, we study the weak Boundedness of the sub-linear operators and its commutators on homogeneous spaces. Based on the properties of homogeneous spaces and the boundedness of sub-linear operators with the commutators generated by BMO and Lipschitz functions on weak Lp(X), the boundedness of the sub-linear operators and its commutators on weak Morrey-Herz spaces on homogeneous spaces are proved, which extend of the boundedness of the operators on Morrey-Herz spaces on homogeneous spaces. |
Key words: homogeneous spaces weak Morrey-Herz spaces sub-linear operator commutator BMO spaces Lipschitz spaces |