数学杂志  2016, Vol. 36 Issue (2): 353-364   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
王丽娟
一类分数次次线性算子及其交换子在齐型空间上的弱Morrey-Herz空间上的有界性
王丽娟     
西北师范大学数学与统计学院, 甘肃 兰州 730070
摘要:本文研究了一类次线性算子及其交换子在齐型空间上的弱有界性的问题.利用齐型空间的基本性质以及给出的一类次线性算子及其分别与BMO函数, Lipschitz函数生成的交换子在Lp(X)上的弱有界性, 证明了其在齐型空间上Morrey-Herz空间中的弱有界性.推广了该类算子在Morrey-Herz空间中的强有界性这一结果.
关键词齐型空间    弱Morrey-Herz空间    次线性算子    交换子    BMO空间    Lipschitz空间    
BOUNDEDNESS OF FRACTIONAL SUB-LINEAR OPERATORS AND ITS COMMUTATORS ON WEAK MORREY-HERZ SPACES ON HOMOGENEOUS SPACE
WANG Li-juan     
College of Mathematics and Statistics Science, Northwest Normal University, Lanzhou 730070, China
Abstract: In this paper, we study the weak Boundedness of the sub-linear operators and its commutators on homogeneous spaces. Based on the properties of homogeneous spaces and the boundedness of sub-linear operators with the commutators generated by BMO and Lipschitz functions on weak L (X), the boundedness of the sub-linear operators and its commutators on weak Morrey-Herz spaces on homogeneous spaces are proved, which extend of the boundedness of the operators on Morrey-Herz spaces on homogeneous spaces.
Key words: homogeneous spaces     weak Morrey-Herz spaces     sub-linear operator     commutator     BMO spaces     Lipschitz spaces    
1 引言

自交换子的概念被引进以来, 学者们对各种交换子的有界性研究产生了浓厚的兴趣, 尤其是1971年Conifman和Weiss在文献[1]中提出在更一般的空间上研究算子的有界性, 也就是后来的Conifman-weiss意义下的齐型空间之后.在文献[2]中, Bramanti和Cerctti介绍了奇异积分算子交换子及分数次积分算子交换子在齐型空间上的有界性.在文献[3]中, Gao Wenhua和Gao Yonghui研究了次线性算子在齐型空间中的Morrey-Herz空间上的弱有界性. Jorge在文献[4]中讨论了分数次积分算子交换子在齐型空间上的有界性. 2010年, 胡国恩等在文献[5]中给出了齐型空间上奇异积分算子极大交换子的加权估计.陶双平, 曹薇在文献[6]中给出了一类次线性算子和BMO函数生成的交换子在齐型空间中的Morrey-Herz空间上的弱有界性.我们知道, 抛物空间, 双曲空间, 球, Heisenberg群以及欧式空间都是齐型空间的特例.因此, 齐型空间上交换子的研究在抛物和双曲偏微分方程的研究中有着广泛的应用.

受上述有研究结果的启发, 本文主要研究了满足如下两个尺寸条件:

(ⅰ) $|T_{l}f(x)|\leq C\mu(B(x_{0}, d(x_{0}, x)))^{l-1}\|f\|_{L^{1}(X)}, $supp$f\subseteq C_{j}, d(x_{0}, x)\geq k_{d}a^{j+1}, j\in\mathbb{Z};$

(ⅱ) $|T_{l}f(x)|\leq C\mu(B_{j})^{l-1}\|f\|_{L^{1}(X)}, $supp$f\subseteq C_{j}, d(x_{0}, x)\leq a^{j-2}/k_{d}, j\in\mathbb{Z}$的次线性算子及其交换子在弱Morrey-Herz空间上的有界性.

在本文中, $C$表示大于0的常数, 且在不同的地方可能不同.

$x_{0}\in X, a\geq 2, B_{j}=\{x\in X:d(x_{0}, x)\leq a^{j}\}, C_{j}=B_{j}\backslash B_{j-1}, j\in \mathbb{Z}, \chi_{j}=\chi_{C_{j}}.$首先, 我们介绍本文的相关定义.

定义 1.1  [7] 设$X $是一个集合, 在这个集合上赋予一个正则的Borel测度$\mu$和一个拟距离$d$.所谓$d$是一个拟距离, 意味着存在一个常数$k_{d}\geqslant 1$, 使得$\forall x, y, z\in X$有下式成立:

$ d(x, y)\leqslant k_{d}(d(x, z)+d(z, y)). $

假如$\mu$还满足双倍条件, 即存在常数$C\geqslant 1$, 使得对于任意的$x\in $X和$r>0$

$ \mu(B(x, 2r))\leqslant C\mu(B(x, r))<\infty, $

其中$B(x, r)$表示以$x$为中心, $r$为半径的球, 则称$(X, d, \mu)$是一个Coifman-Weiss意义下的齐型空间.

齐型空间上的测度$\mu$还存在下面的性质(见参考文献[8]).

对于$a\in\mathbb{R}, a\geq2, $存在常数$A>1$, 使得对$x\in X, 0<r<\infty, $

$ \mu(B(x, ar))\geq A\mu(B(x, r)). $

定义 1.2  [9] 称齐型空间$(X, \mu, d)$是正规的, 如果存在常数$C_{1}, C_{2}>0$, 使得对任一$x\in X, r:\mu(x)<r<\mu(X)$

$ C_{1}r\leq \mu(B(x, r))\leq C_{2}r . $

定义 1.3  [3] 设$(X, d, \mu)$为齐型空间, $\alpha\in \mathbb{R}, 0\leqslant \lambda<\infty, 0<p<\infty, 1\leqslant q<\infty, $

(1) Morrey-Herz空间定义为

$ M\dot{K}_{p, q}^{\alpha, \lambda}(X)=\{f\in L_{loc}^{q}(X\backslash\{x_{0}\}):\|f\|_{M\dot{K}_{p, q}^{\alpha, \lambda}(X)}<\infty\}, $

其中

$ \|f\|_{M\dot{K}_{p, q}^{\alpha, \lambda}(X)}=\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda }(\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p}\|f\chi_{k}\|_{L^{q}(X)}^{p})^{\frac{1}{p}}. $

(2) 弱Morrey-Herz空间定义为

$ WM\dot{K}_{p, q}^{\alpha, \lambda}(X)=\{f:f是X上的可测函数, 且\|f\|_{WM\dot{K}_{p, q}^{\alpha, \lambda}(X)}<\infty\}, $

其中

$ \|f\|_{WM\dot{K}_{p, q}^{\alpha, \lambda}(X)}=\sup\limits_{\gamma>0}\gamma\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda} \left\{\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p}\mu\{x\in C_{k}:|f(x)|>\gamma\}^{p/q}\right\}^{\frac{1}{p}}. $

$p=\infty$时, 作通常的修改.

定义 1.4  [10] 设$(X, d, \mu)$是齐型空间, $0<l<1$, 齐型空间上的分数次积分算子定义为

$ I_{l}(f)(x)=\int_{X}K_{l}(x, y)f(y)d\mu(y), $

其中

$ K_{l}(x, y)= \begin{cases} \mu(B(x, d(x, y)))^{l-1}, &x\in X\backslash\{y\};\\ \mu(\{x\})^{l-1}, &x=y, \mu(\{x\})>0. \end{cases} $

定义1.5  [11] 设$(X, d, \mu)$为齐型空间,

$ Mf(x)=\sup\limits_{x\in B}\mu(B)^{-1}\int_{B}|f(y)|d\mu(y), \\ f^{\sharp}(x)=\sup\limits_{x\in B}\mu(B)^{-1}\int_{B}|f(y)-f_{B}|d\mu(y), $

齐型空间上的BMO空间定义为

$ {\hbox{BMO}}(X)=\{f\in L_{{\hbox{loc}}}^{1}(X):\|f\|_{\ast}<\infty\}, $

其中$f_{B}=\mu(B)^{-1}\displaystyle\int_{B}|f(x)|d\mu(x)$, $\|f\|_{\ast}=\sup\limits_{x}f^{\sharp}(x)$.

定义1.6  [12] 设$(X, d, \mu)$是齐型空间, $0<\beta<1$, 齐型空间上的Lipschitz空间定义为

$ {\hbox{Lip}}_{\beta}(X)=\{f:\|f\|_{{\hbox{Lip}}_{\beta}}=\sup\limits_{x, y\in X, x\neq y}\frac{|f(x)-f(y)|}{d(x, y)^{\beta}}<\infty\}. $

定义 1.7  [13] 设$T$是次线性算子, $b\in L_{{\hbox{loc}}}(X)$, 定义由$b$$T$生成的交换子为

$ [b, T](f)(x)=T[(b(x)-b)f](x). $
2 主要结果及其证明

为证我们的结果, 需要以下一些结论.

引理2.1  [11] (1) 对每个$p:1\leq p<\infty$, 存在常数$C$使得对每个$f\in {\hbox{BMO}}(X)$及球$B$

$ \left(\mu(B)^{-1}\int_{B}|f(y)-f_{B}|^{p}d\mu(y)\right)^{1/p}\leq C\|f\|_{\ast}. $

(2) 令$b\in {\hbox{BMO}}(X), k, j\in \mathbb{Z}, k>j$, 则存在常数$C$使得

$ |b_{k}-b_{j}|\leq C(k-j)\|b\|_{\ast}, $

其中$b_{k}, b_{j}$分别是$b$在球$B_{k}, B_{j}$上的平均值.

引理 2.2  [14] 设$(X, d, \mu)$是齐型空间, $0<\beta<1, 1\leq p\leq\infty, f\in {\hbox{Lip}}_{\beta}(X), $

$ \|f\|_{{\hbox{Lip}}_{\beta}(X)}\quad\approx\quad\sup\limits_{B}\frac{1}{\mu(B)^{1+\beta}}\int_{B}|f(x)-f_{B}|d\mu(x)\\ \quad\quad\quad\quad\quad\quad\approx\quad\sup\limits_{B}\frac{1}{\mu(B)^{\beta}}\bigg(\frac{1}{\mu(B)}\int_{B}|f(x)-f_{B}|^{p}d\mu(x)\bigg)^{1/p}, $

其中$f_{B}=\frac{1}{\mu(B)}\displaystyle\int_{B}f(x)d\mu(x)$.

引理 2.3  [15] 设$(X, d, \mu)$是齐型空间, $B_{1}\subset B_{2}$, $f\in {\rm Lip}_{\beta}(X)$, 则

$ |f_{B_{1}}-f_{B_{2}}| \leq C\|f\|_{{\hbox{Lip}}_{\beta}(X)} \mu(B_{2})^{\beta}, $

其中$f_{B}=\frac{1}{\mu(B)}\displaystyle\int_{B}f(x)d\mu(x)$.

引理 2.4  [4] 设$(X, d, \mu)$是正规齐型空间, $0<l<1, 1<q<\infty, 1-1/q=l$,

(1) 存在常数$C>0, $使得对每个$f\in L^{1}(X), \gamma>0, $

$ \mu\{x\in X:|I_{l}(f)(x)|>\gamma\}\leq C(\frac{\|f\|_{L^{1}(X)}}{\gamma})^{q}. $

(2) 若$1<p<1/l, f\in L^{p}(X), b\in L^{p'}(X), $则存在常数$C>0, $使得对$\gamma>0, $

$ \mu\{x\in X:|[b, I_{l}](f)(x)|>\gamma\}\leq C(\frac{\|b\|_{L^{p'}(X)}\|f\|_{L^{p}(X)}}{\gamma})^{q}. $

引理2.5  设$(X, d, \mu)$是正规齐型空间, $b\in {\rm Lip}_{\beta}(X), 0<\beta, l<1, 1<q<\infty, 1-1/q=l+\beta<1$, 则交换子$[b, I_{l}]$$L^{1}(X)$$L^{q, \infty}(X)$有界.

  注意到$\mu(B(x, d(x, y)))\sim d(x, y), y\in B(x, d(x, y)), $于是

$ |[b, I_{l}]f(x)|\quad\leq\quad\int_{X}|b(x)-b(y)|\mu(B(x, d(x, y)))^{l-1}|f(y)|d\mu(y)\\ \quad\quad\quad\quad\quad\leq\quad \int_{X}\frac{|b(x)-b(y)|}{d(x, y)^{\beta}}\frac{d(x, y)^{\beta}}{\mu(B(x, d(x, y)))^{1-l}}|f(y)|d\mu(y)\\ \quad\quad\quad\quad\quad\leq\quad C\|b\|_{{\hbox{Lip}}_{\beta}(X)}\int_{X}\mu(B(x, r))^{1-l-\beta}|f(y)|d\mu(y)\\ \quad\quad\quad\quad\quad\leq\quad C\|b\|_{{\hbox{Lip}}_{\beta}(X)}I_{l+\beta}(|f|)(x). $

由引理2.4知$I_{l+\beta}$$L^{1}(X)$$L^{q, \infty}(X)$有界, 从而有

$ \|[b, I_{l}](f)\|_{L^{q, \infty}(X)}\leq C\|b\|_{{\hbox{Lip}}_{\beta}(X)}\|f\|_{L^{1}(X)}. $

即引理2.5成立.

主要结果如下:

定理2.1  设$(X, d, \mu)$为齐型空间, 令$0\leq \lambda < \infty, 0\leq l<1, 1<q_{1}<1/l, 1/q_{2}=1/q_{1}-l, \lambda -1/q_{2}<\alpha<\lambda+1-1/q_{1}$$0<p_{1}\leq p_{2}<\infty$, 若次线性算子$T_{l}$满足尺寸条件(ⅰ),(ⅱ)且$T_{l}$$L^{q_{1}}(X)$$L^{q_{2}, \infty}(X)$有界, 则$T_{l}$$M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)$$WM\dot{K}_{p_{2}, q_{2}}^{\alpha, \lambda}(X)$有界.

  若$p_{1}\leq p_{2}, $$WM\dot{K}_{p_{1}, q_{2}}^{\alpha, \lambda}(X)\subseteq WM\dot{K}_{p_{2}, q_{2}}^{\alpha, \lambda}(X).$故对于本定理, 我们只需证明$p_{1}=p_{2}$的情形.令

$ f=f\chi_{B_{k-K}}+f\chi_{B_{k+K-1}\backslash B_{k-K}}+f\chi_{X\backslash B_{k+K-1}}\triangleq F_{1}+F_{2}+F_{3}, $

其中$K=2+[\log_{a}k_{d}], k_{d}$是(1.1) 式中的常数, $[]$是取整函数, 则

$ |T_{l}(f)|\leq C(|T_{l}(F_{1})|+|T_{l}(F_{2})|+|T_{l}(F_{3})|), $

故有

$ \quad\quad\|T_{l}(f)\|^{p_{1}}_{WM\dot{K}_{p_{1}, q_{2}}^{\alpha, \lambda}(X)}\\ \leq\quad\sum\limits_{i=1}^{3}\sup\limits_{\gamma>0}\gamma^{p_{1}}\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}} \sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\mu\{x\in C_{k}:|T_{l}(F_{i})(x)|>\gamma/3\}^{p_{1}/q_{2}}\\ \triangleq\quad I_{1}+I_{2}+I_{3}. $

对于$I_{2}$, 由$T_{l}$$L^{q_{1}}(X)$$L^{q_{2}, \infty}(X)$有界, 可知

$ I_{2}\quad\leq\quad C\sup\limits_{\gamma>0}\gamma^{p_{1}}\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}} \sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}[\sum\limits_{j=k-K+1}^{k+K-1}\frac{\|f_{j}\|_{L^{q_{1}}(X)}}{\gamma}]^{p_{1}}\\ \quad\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\|f_{k}\|_{L^{q_{1}}(X)}^{p_{1}} \leq C\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}. $

对于$I_{i}, i=1, 3$, 由$1/q_{2}=1/q_{1}-l, $可知$q_{2}\geq q_{1}> 1, $于是

$ I_{i}\quad\leq\quad \sup\limits_{\gamma>0}\gamma^{p_{1}}\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}} \sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\left(\int_{C_{k}}\frac{|T_{l}(F_{i})(x)|}{\gamma}d\mu(x)\right)^{p_{1}/q_{2}}\\ \quad\quad\leq\quad \sup\limits_{\gamma>0}\gamma^{p_{1}}\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}} \sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\left(\int_{C_{k}}\frac{|T_{l}(F_{i})(x)|^{q_{2}}}{\gamma^{q_{2}}}d\mu(x)\right)^{p_{1}/q_{2}}\\ \quad\quad\leq\quad \sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\|T_{l}(F_{i})\chi_{k}\|_{L^{q_{2}}(X)}^{p_{1}}. $

对于$I_{1}$, 注意到$j\leq k-K, x\in C_{k}, 1/q_{2}=1/q_{1}-l, $由条件(ⅰ)可得

$ |T_{l}(F_{1})(x)|\quad\leq\quad\sum\limits_{j=-\infty}^{k-K}|T_{l}(f_{j})(x)| \leq C\sum\limits_{j=-\infty}^{k-K}\mu(B(x_{0}, d(x_{0}, x)))^{l-1}\|f_{j}\|_{L^{1}(X)}\\ \quad\quad\quad\quad\quad\quad\leq\quad C\sum\limits_{j=-\infty}^{k-K}\mu(B_{k})^{l-1}\|f_{j}\|_{L^{1}(X)}. $

$ \|T_{l}(F_{1})\chi_{k}\|_{L^{q_{2}}(X)}\leq C\sum\limits_{j=-\infty}^{k-K}\mu(B_{k})^{l-1+1/q_{2}}\|f_{j}\|_{L^{1}(X)} =C\sum\limits_{j=-\infty}^{k-K}\mu(B_{k})^{1/q_{1}-1}\|f_{j}\|_{L^{1}(X)}. $

又注意到$\alpha<\lambda+1-1/q_{1}, $$\|f_{j}\|_{L^{q}(X)}^{p}\leq \mu(B_{j})^{-\alpha p}\sum\limits_{l=-\infty}^{j}\mu(B_{l})^{\alpha p}\|f_{l}\|_{L^{q}(X)}^{p}, $从而有

$ I_{1}\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{(\alpha+1/q_{1}-1) p_{1}}\left(\sum\limits_{j=-\infty}^{k-K}\|f_{j}\|_{L^{1}(X)}\right)^{p_{1}}\\ \quad\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{(\alpha+1/q_{1}-1) p_{1}}\left(\sum\limits_{j=-\infty}^{k-K}\|f_{j}\|_{L^{q_{1}}(X)}\mu(B_{j})^{(1-1/q_{1})}\right)^{p_{1}}\\ \quad\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\sum\limits_{k=-\infty}^{k_{0}}\left(\frac{\mu(B_{k})}{\mu(B_{k_{0}})}\right)^{\lambda p_{1}}\left\{\sum\limits_{j=-\infty}^{k-K}\left(\frac{\mu(B_{j})}{\mu(B_{k})}\right)^{\lambda-1/q_{1}+1-\alpha}\mu(B_{j})^{-\lambda}\right.\\ \quad\quad\quad\quad\left.\times\left\{\sum\limits_{l=-\infty}^{j}\mu(B_{l})^{\alpha p_{1}}\|f_{l}\|^{p_{1}}_{L^{q_{1}}(X)}\right\}^{1/p_{1}}\right\}^{p_{1}}\\ \quad\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\sum\limits_{k=-\infty}^{k_{0}}A^{(k-k_{0})\lambda p_{1}}\{\sum\limits_{j=-\infty}^{k-K}A^{(j-k)(\lambda-1/q_{1}+1-\alpha)}\}^{p_{1}}\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)} \leq C\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}. $

对于$I_{3}$, 注意到$j\geq k+K, x\in C_{k}, 1/q_{2}=1/q_{1}-l, $由条件(ⅱ)可得

$ |T_{l}(F_{3})(x)|\leq\sum\limits_{j=k+K}^{\infty}|T_{l}(f_{j})(x)| \leq C\sum\limits_{j=k+K}^{\infty}\mu(B_{j})^{l-1}\|f_{j}\|_{L^{1}(X)}. $

$ \|T_{l}(F_{3})\chi_{k}\|_{L^{q_{2}}(X)}\leq C\mu(B_{j})^{l-1}\mu(B_{k})^{1/q_{2}}\sum\limits_{j=k+K}^{\infty}\|f_{j}\|_{L^{1}(X)}. $

又注意到$\alpha>\lambda-1/q_{2}, $由对$I_{1}$的讨论, 有

$ I_{3}\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\left(\mu(B_{j})^{l-1}\mu(B_{k})^{1/q_{2}}\sum\limits_{j=k+K}^{\infty}\|f_{j}\|_{L^{1}(X)}\right)^{p_{1}}\\ \quad\quad\leq\quad C\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}. $

综上所述, 定理2.1得证.

定理 2.2  设$(X, d, \mu)$为齐型空间, 令$b\in {\hbox{Lip}}_{\beta}(X)$, $0\leq \lambda < \infty, 0\leq l<1, 0<\beta<1, l+\beta<1, 1<q_{1}<1/(\beta+l), 1/q_{2}=1/q_{1}-l-\beta, \lambda -1/q_{2}<\alpha<\lambda+1-1/q_{1}$$0<p_{1}\leq p_{2}<\infty$, 若次线性算子$T_{l}$满足尺寸条件(ⅰ),(ⅱ)且交换子$[b, T_{l}]$$L^{q_{1}}(X)$$L^{q_{2}, \infty}(X)$有界, 即$\|[b, T_{l}]f\|_{L^{q_{2}, \infty}(X)}\leq C\|b\|_{{\hbox{Lip}}_{\beta}}\|f\|_{L^{q_{1}}(X)}, $$[b, T_{l}]$$M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)$$WM\dot{K}_{p_{2}, q_{2}}^{\alpha, \lambda}(X)$有界.

  类似定理2.1, 只需证明$p_{1}=p_{2}$的情形.令

$ f=f\chi_{B_{k-K}}+f\chi_{B_{k+K-1}\backslash B_{k-K}}+f\chi_{X\backslash B_{k+K-1}}\triangleq F_{1}+F_{2}+F_{3}, $

其中$K=2+[\log_{a}k_{d}], k_{d}$是(1.1) 式中的常数, $[] $是取整函数, 则

$ |[b, T_{l}](f)|\leq C(|[b, T_{l}](F_{1})|+|[b, T_{l}](F_{2})|+|[b, T_{l}](F_{3})|), $

故有

$ \quad\quad\|[b, T_{l}](f)\|^{p_{1}}_{WM\dot{K}_{p_{1}, q_{2}}^{\alpha, \lambda}(X)}\\ \leq\quad\sum\limits_{i=1}^{3}\sup\limits_{\gamma>0}\gamma^{p_{1}}\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}} \sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\mu\{x\in C_{k}:|[b, T_{l}](F_{i})(x)|>\gamma/3\}^{p_{1}/q_{2}}\\ \triangleq\quad J_{1}+J_{2}+J_{3}. $

对于$J_{2}$, 由$T_{l}$$L^{q_{1}}(X)$$L^{q_{2}, \infty}(X)$有界, 可知

$ J_{2}\quad\leq\quad C\|b\|_{Lip_{\beta}}\sup\limits_{\gamma>0}\gamma^{p_{1}}\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}} \sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}[\sum\limits_{j=k-K+1}^{k+K-1}\frac{\|f_{j}\|_{L^{q_{1}}(X)}}{\gamma}]^{p_{1}}\\ \quad\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\|f_{k}\|_{L^{q_{1}}(X)}^{p_{1}}\\ \quad\quad\leq\quad C\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}. $

对于$J_{i}, i=1, 3$, 由$1/q_{2}=1/q_{1}-l-\beta, $可知$q_{2}\geq q_{1}> 1, $于是由定理2.1的证明过程可知

$ J_{i}\leq \sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\|[b, T_{l}](F_{i})\chi_{k}\|_{L^{q_{2}}(X)}^{p_{1}}. $

对于$J_{1}$, 注意到$j\leq k-K, x\in C_{k}, 1/q_{2}=1/q_{1}-l-\beta, $由条件(ⅰ)可得

$ |[b, T_{l}](f_{j})(x)| \leq C\mu(B(x_{0}, d(x_{0}, x)))^{l-1}\|(b(\cdot)-b)f_{j}\|_{L^{1}(X)}\leq C\mu(B_{k})^{l-1}\|(b(\cdot)-b)f_{j}\|_{L^{1}(X)}, $

从而有

$ \quad\quad\|[b, T_{l}](f_{j})\chi_{k}\|_{L^{q_{2}}(X)}^{q_{2}}\\ \leq\quad C\mu(B_{k})^{(l-1)q_{2}}\int_{C_{k}}[\int_{C_{j}}|b(x)-b(y)||f_{j}(y)|d\mu(y)]^{q_{2}}d\mu(x)\\ \leq\quad C\mu(B_{k})^{(l-1)q_{2}}\int_{C_{k}}[\int_{C_{j}}|b(x)-b_{k}||f_{j}(y)|d\mu(y)]^{q_{2}}d\mu(x)\\ \quad\quad+ C\mu(B_{k})^{(l-1)q_{2}}\int_{C_{k}}[\int_{C_{j}}|b_{k}-b_{j}||f_{j}(y)|d\mu(y)]^{q_{2}}d\mu(x)\\ \quad\quad+ C\mu(B_{k})^{(l-1)q_{2}}\int_{C_{k}}[\int_{C_{j}}|b(y)-b_{j}||f_{j}(y)|d\mu(y)]^{q_{2}}d\mu(x). $

故由引理2.2, 引理2.3及Hölder不等式, 可知

$ \quad\quad\|[b, T_{l}](f_{j})\chi_{k}\|_{L^{q_{2}}(X)}^{q_{2}}\\ \leq\quad C\mu(B_{k})^{(l-1)q_{2}}\int_{C_{k}}|b(x)-b_{k}|^{q_{2}}d\mu(x)[\int_{C_{j}}|f_{j}(y)|^{q_{1}}d\mu(y)]^{q_{2}/q_{1}}\mu(B_{j})^{q_{2}/q_{1}'}\\ \quad\quad+C\mu(B_{k})^{(l-1+\beta)q_{2}+1}\|b\|_{Lip_{\beta}}^{q_{2}}[\int_{C_{j}}|f_{j}(y)|^{q_{1}}d\mu(y)]^{q_{2}/q_{1}}\mu(B_{j})^{q_{2}/q_{1}'}\\ \quad\quad+C\mu(B_{k})^{(l-1)q_{2}+1}[\int_{C_{j}}|f_{j}(y)|^{q_{1}}d\mu(y)]^{q_{2}/q_{1}}[\int_{C_{j}}|b(y)-b_{j}|^{q_{1}'}d\mu(y)]^{q_{2}/q_{1}'}\\ \leq\quad C\mu(B_{k})^{(l-1+\beta)q_{2}+1}\mu(B_{j})^{q_{2}/q_{1}'}\|b\|_{Lip_{\beta}}^{q_{2}}\|f_{j}\|_{L^{q_{1}}(X)}^{q_{2}}\\ \quad\quad+C\mu(B_{k})^{(l-1+\beta)q_{2}+1}\mu(B_{j})^{q_{2}/q_{1}'}\|b\|_{Lip_{\beta}}^{q_{2}}\|f_{j}\|_{L^{q_{1}}(X)}^{q_{2}}\\ \quad\quad+C\mu(B_{k})^{(l-1)q_{2}+1}\mu(B_{j})^{q_{2}/q_{1}'+\beta q_{2}}\|b\|_{Lip_{\beta}}^{q_{2}}\|f_{j}\|_{L^{q_{1}}(X)}^{q_{2}}\\ \leq\quad C\left(\frac{\mu(B_{j})}{\mu(B_{k})}\right)^{q_{2}(1-1/q_{1})}\left(2+\frac{\mu(B_{j})^{\beta q_{2}}}{\mu(B_{k})^{\beta q_{2}}}\right)\|b\|_{Lip_{\beta}}^{q_{2}}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}\\ \leq\quad C\left(\frac{\mu(B_{j})}{\mu(B_{k})}\right)^{q_{2}(1-1/q_{1})}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}. $

又注意到$\alpha<\lambda+1-1/q_{1}, $类似于对$I_{1}$的讨论, 有

$ J_{1}\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\left\{\sum\limits_{j=-\infty}^{k-K}\left(\frac{\mu(B_{j})}{\mu(B_{k})}\right)^{1-1/q_{1}}\|f_{j}\|_{L^{q_{1}}(X)}\right\}^{p_{1}}\\ \quad\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\sum\limits_{k=-\infty}^{k_{0}}\left(\frac{\mu(B_{k})}{\mu(B_{k_{0}})}\right)^{\lambda p_{1}}\left\{\sum\limits_{j=-\infty}^{k-K}\left(\frac{\mu(B_{j})}{\mu(B_{k})}\right)^{\lambda-1/q_{1}+1-\alpha}\mu(B_{j})^{-\lambda}\right.\\ \quad\quad\quad\quad\left.\times\left\{\sum\limits_{l=-\infty}^{j}\mu(B_{l})^{\alpha p_{1}}\|f_{l}\|^{p_{1}}_{L^{q_{1}}(X)}\right\}^{1/p_{1}}\right\}^{p_{1}}\\ \quad\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\sum\limits_{k=-\infty}^{k_{0}}A^{(k-k_{0})\lambda p_{1}}\{\sum\limits_{j=-\infty}^{k-K}A^{(j-k)(\lambda-1/q_{1}+1-\alpha)}\}^{p_{1}}\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}\\ \quad\quad\leq\quad C\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}. $

对于$J_{3}$, 注意到$j\geq k+K, x\in C_{k}, 1/q_{2}=1/q_{1}-l-\beta, $由条件(ⅱ)可得

$ |[b, T_{l}](f_{j})(x)|\leq C\mu(B_{j})^{l-1}\|(b(\cdot)-b)f_{j}\|_{L^{1}(X)}. $

于是类似于$J_{1}$的证明, 有

$ \quad\quad\|[b, T_{l}](f_{j})\chi_{k}\|_{L^{q_{2}}(X)}^{q_{2}}\\ \leq\quad C\mu(B_{j})^{(l-1)q_{2}}\int_{C_{k}}[\int_{C_{j}}|b(x)-b(y)||f_{j}(y)|d\mu(y)]^{q_{2}}d\mu(x)\\ \leq\quad C\frac{\mu(B_{j})}{\mu(B_{k})}\left(2+\frac{\mu(B_{k})}{\mu(B_{k})}\right)\|b\|_{Lip_{\beta}}^{q_{2}}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}\\ \leq\quad C\frac{\mu(B_{k})}{\mu(B_{j})}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}. $

又注意到$\alpha>\lambda-1/q_{2}, $类似于$J_{1}$的讨论, 有

$ J_{3}\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\left\{\sum\limits_{j=k+K}^{\infty}\frac{\mu(B_{k})}{\mu(B_{j})}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}\right\}^{p_{1}}\\ \quad\quad\leq\quad C\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}. $

综上所述, 定理2.2得证.

定理 2.3  设$(X, d, \mu)$为齐型空间, 令$b\in {\hbox{BMO}}(X), 0\leq \lambda < \infty, 0\leq l<1, 1<q_{1}<1/l, 1/q_{2}=1/q_{1}-l, \lambda -1/q_{2}<\alpha<\lambda+1-1/q_{1}$$0<p_{1}\leq p_{2}<\infty$, 若次线性算子$T_{l}$满足尺寸条件(ⅰ),(ⅱ)且交换子$[b, T_{l}]$$L^{q_{1}}(X)$$L^{q_{2}, \infty}(X)$有界, 即$\|[b, T_{l}]f\|_{L^{q_{2}, \infty}(X)}\leq C\|b\|_{*}\|f\|_{L^{q_{1}}(X)}, $$[b, T_{l}]$$M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)$$WM\dot{K}_{p_{2}, q_{2}}^{\alpha, \lambda}(X)$有界.

  类似定理2.1, 只需证明$p_{1}=p_{2}$的情形.令

$ f=f\chi_{B_{k-K}}+f\chi_{B_{k+K-1}\backslash B_{k-K}}+f\chi_{X\backslash B_{k+K-1}}\triangleq F_{1}+F_{2}+F_{3}, $

其中$K=2+[\log_{a}k_{d}], k_{d}$是(1.1) 式中的常数, $[]$是取整函数.则

$ |[b, T_{l}](f)|\leq C(|[b, T_{l}](F_{1})|+|[b, T_{l}](F_{2})|+|[b, T_{l}](F_{3})|), $

故有

$ \quad\quad\|[b, T_{l}](f)\|^{p_{1}}_{WM\dot{K}_{p_{1}, q_{2}}^{\alpha, \lambda}(X)}\\ \leq\quad\sum\limits_{i=1}^{3}\sup\limits_{\gamma>0}\gamma^{p_{1}}\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}} \sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\mu\{x\in C_{k}:|[b, T_{l}](F_{i})(x)|>\gamma/3\}^{p_{1}/q_{2}}\\ \triangleq\quad M_{1}+M_{2}+M_{3}. $

对于$M_{2}$, 由$T_{l}$$L^{q_{1}}(X)$$L^{q_{2}, \infty}(X)$有界, 可知

$ M_{2}\quad\leq\quad C\|b\|_{\ast}\sup\limits_{\gamma>0}\gamma^{p_{1}}\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}} \sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}[\sum\limits_{j=k-K+1}^{k+K-1}\frac{\|f_{j}\|_{L^{q_{1}}(X)}}{\gamma}]^{p_{1}}\\ \quad\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\|f_{k}\|_{L^{q_{1}}(X)}^{p_{1}}\\ \quad\quad\leq\quad C\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}. $

对于$M_{i}, i=1, 3$, 由$1/q_{2}=1/q_{1}-l, $可知$q_{2}/q_{1}\geq 1, $于是由定理2.1的证明过程可知

$ M_{i}\leq \sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\|[b, T_{l}](F_{i})\chi_{k}\|_{L^{q_{2}}(X)}^{p_{1}}. $

对于$M_{1}$, 注意到$j\leq k-K, x\in C_{k}, 1/q_{2}=1/q_{1}-l, $由条件(ⅰ)可得

$ |[b, T_{l}](f_{j})(x)| \leq C\mu(B(x_{0}, d(x_{0}, x)))^{l-1}\|(b(\cdot)-b)f_{j}\|_{L^{1}(X)}\leq C\mu(B_{k})^{l-1}\|(b(\cdot)-b)f_{j}\|_{L^{1}(X)}, $

从而有

$ \quad\quad\|[b, T_{l}](f_{j})\chi_{k}\|_{L^{q_{2}}(X)}^{q_{2}}\\ \leq\quad C\mu(B_{k})^{(l-1)q_{2}}\int_{C_{k}}[\int_{C_{j}}|b(x)-b(y)||f_{j}(y)|d\mu(y)]^{q_{2}}d\mu(x)\\ \leq\quad C\mu(B_{k})^{(l-1)q_{2}}\int_{C_{k}}[\int_{C_{j}}|b(x)-b_{k}||f_{j}(y)|d\mu(y)]^{q_{2}}d\mu(x)\\ \quad\quad+C\mu(B_{k})^{(l-1)q_{2}}\int_{C_{k}}[\int_{C_{j}}|b_{k}-b_{j}||f_{j}(y)|d\mu(y)]^{q_{2}}d\mu(x)\\ \quad\quad+C\mu(B_{k})^{(l-1)q_{2}}\int_{C_{k}}[\int_{C_{j}}|b(y)-b_{j}||f_{j}(y)|d\mu(y)]^{q_{2}}d\mu(x), $

又由$1/q_{2}=1/q_{1}-l, $引理2.1及Hölder不等式, 可得

$ \quad\quad\|[b, T_{l}](f_{j})\chi_{k}\|_{L^{q_{2}}(X)}^{q_{2}}\\ \leq\quad C\mu(B_{k})^{(l-1)q_{2}}\int_{C_{k}}|b(x)-b_{k}|^{q_{2}}d\mu(x)[\int_{C_{j}}|f_{j}(y)|^{q_{1}}d\mu(y)]^{q_{2}/q_{1}}\mu(B_{j})^{q_{2}/q_{1}'}\\ \quad\quad+C\mu(B_{k})^{(l-1)q_{2}+1}(k-j)^{q_{2}}\|b\|_{\ast}^{q_{2}}[\int_{C_{j}}|f_{j}(y)|^{q_{1}}d\mu(y)]^{q_{2}/q_{1}}\mu(B_{j})^{q_{2}/q_{1}'}\\ \quad\quad+C\mu(B_{k})^{(l-1)q_{2}}[\int_{C_{j}}|f_{j}(y)|^{q_{1}}d\mu(y)]^{q_{2}/q_{1}}[\int_{C_{j}}|b(y)-b_{j}|^{q_{1}'}d\mu(y)]^{q_{2}/q_{1}'}\\ \leq\quad C\mu(B_{k})^{(l-1)q_{2}+1}\mu(B_{j})^{q_{2}/q_{1}'}\|b\|_{\ast}^{q_{2}}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}\\ \quad\quad+C\mu(B_{k})^{(l-1)q_{2}+1}\mu(B_{j})^{q_{2}/q_{1}'}(k-j)^{q_{2}}\|b\|_{\ast}^{q_{2}}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}\\ \quad\quad+C\mu(B_{k})^{(l-1)q_{2}+1}\mu(B_{j})^{q_{2}/q_{1}'}\|b\|_{\ast}^{q_{2}}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}\\ \leq\quad C\left(\frac{\mu(B_{j})}{\mu(B_{k})}\right)^{q_{2}(1-1/q_{1})}[2+(k-j)^{q_{2}}]\|b\|_{\ast}^{q_{2}}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}\\ \leq \quad C\left(\frac{\mu(B_{j})}{\mu(B_{k})}\right)^{q_{2}(1-1/q_{1})}(k-j)^{q_{2}}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}. $

注意到$\alpha<\lambda+1-1/q_{1}, $$\|f_{j}\|_{L^{q}(X)}^{p}\leq \mu(B_{j})^{-\alpha p}\sum\limits_{l=-\infty}^{j}\mu(B_{l})^{\alpha p}\|f_{l}\|_{L^{q}(X)}^{p}$及(1.2) 式, 有

$ M_{1}\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\left\{\sum\limits_{j=-\infty}^{k-K}(k-j)\left(\frac{\mu(B_{j})}{\mu(B_{k})}\right)^{1-1/q_{1}}\|f_{j}\|_{L^{q_{1}}(X)}\right\}^{p_{1}}\\ \quad\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\sum\limits_{k=-\infty}^{k_{0}}\left(\frac{\mu(B_{k})}{\mu(B_{k_{0}})}\right)^{\lambda p_{1}}\left\{\sum\limits_{j=-\infty}^{k-K}(k-j)\left(\frac{\mu(B_{j})}{\mu(B_{k})}\right)^{\lambda-1/q_{1}+1-\alpha}\mu(B_{j})^{-\lambda}\right.\\ \quad\quad\quad\quad\left.\times\left\{\sum\limits_{l=-\infty}^{j}\mu(B_{l})^{\alpha p_{1}}\|f_{l}\|^{p_{1}}_{L^{q_{1}}(X)}\right\}^{1/p_{1}}\right\}^{p_{1}}\\ \\ \quad\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\sum\limits_{k=-\infty}^{k_{0}}A^{(k-k_{0})\lambda p_{1}}\{\sum\limits_{j=-\infty}^{k-K}(k-j)A^{(k-j)(\alpha-\lambda+1/q-1)}\}^{p_{1}}\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}\\ \quad\quad\leq\quad C\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}. $

对于$M_{3}$, 注意到$j\geq k+K, x\in C_{k}, 1/q_{2}=1/q_{1}-l, $由条件(ⅱ)可得

$ |[b, T_{l}](f_{j})(x)|\leq C\mu(B_{j})^{l-1}\|(b(\cdot)-b)f_{j}\|_{L^{1}(X)}. $

于是, 类似于$M_{1}$的证明, 有

$ \quad\quad\|[b, T_{l}](f_{j})\chi_{k}\|_{L^{q_{2}}(X)}^{q_{2}}\\ \leq\quad C\mu(B_{j})^{(l-1)q_{2}}\int_{C_{k}}[\int_{C_{j}}|b(x)-b(y)|\cdot|f_{j}(y)|d\mu(y)]^{q_{2}}d\mu(x)\\ \leq\quad C\frac{\mu(B_{k})}{\mu(B_{j})}(j-k)^{q_{2}}\|f_{j}\|^{q_{2}}_{L^{q_{1}}(X)}. $

注意到$\alpha>\lambda-1/q_{2}, $由对$M_{1}$的讨论过程, 有

$ M_{3}\quad\leq\quad C\sup\limits_{k_{0}\in\mathbb{Z}}\mu(B_{k_{0}})^{-\lambda p_{1}}\sum\limits_{k=-\infty}^{k_{0}}\mu(B_{k})^{\alpha p_{1}}\left\{\sum\limits_{j=-\infty}^{k-K}(j-k)\left(\frac{\mu(B_{k})}{\mu(B_{j})}\right)^{1/q_{2}}\|f_{j}\|_{L^{q_{1}}(X)}\right\}^{p_{1}}\\ \quad\quad\leq\quad C\|f\|^{p_{1}}_{M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)}. $

综上所述, 定理2.3得证.

因为分数次积分算子$I_{l}$满足尺寸条件(ⅰ),(ⅱ), 故由本文定理及引理2.4, 引理2.5, 可得下述推论.

推论 2.1  设$(X, d, \mu)$为正规齐型空间, $0\leq l<1, I_{l}$是分数次积分算子.

(1) 若$0\leq \lambda < \infty, 0\leq l<1, 1/q=1-l, \lambda -1/q<\alpha<\lambda$$0<p_{1}\leq p_{2}<\infty$, 则$I_{l}$$M\dot{K}_{p_{1}, 1}^{\alpha, \lambda}(X)$$WM\dot{K}_{p_{2}, q}^{\alpha, \lambda}(X)$有界.

(2) 若$b\in {\rm Lip}_{\beta}(X)$, $0\leq \lambda < \infty, 0<\beta<1, l+\beta<1, 1/q=l-\beta, \lambda -1/q<\alpha<\lambda$$0<p_{1}\leq p_{2}<\infty$, 则$[b, I_{l}]$$M\dot{K}_{p_{1}, 1}^{\alpha, \lambda}(X)$$WM\dot{K}_{p_{2}, q}^{\alpha, \lambda}(X)$有界.

(3) 若$b\in L^{p'}(X), 0\leq \lambda < \infty, 1<q_{1}<1/l, 1/q_{2}=1-l, \lambda -1/q_{2}<\alpha<\lambda+1-1/q_{1}$$0<p_{1}\leq p_{2}<\infty$, 则$[b, I_{l}]$$M\dot{K}_{p_{1}, q_{1}}^{\alpha, \lambda}(X)$$WM\dot{K}_{p_{2}, q_{2}}^{\alpha, \lambda}(X)$有界.

  设$(X, d, \mu)$为齐型空间, $0\leq l<1, $若用下式

$ |T_{l}f(x)|\leq C\int_{X}\frac{|f(y)|}{\mu(B(x_{0}, d(x, y)))^{1-l}}d\mu(y), x\not\in {\hbox{supp}}f. $

代替本文中次线性算子$T_{l}$所满足的尺寸条件(ⅰ)和(ⅱ), 则定理2.1-2.3依然成立.具体证明可参阅文献[16].

致谢

此文感谢导师安徽师范大学数学计算机科学学院束立生教授的悉心指导!

参考文献
[1] Coifman R R, Weiss G. Analyse harmonique non-commutative sur certain spaces homognes[M]. Lecture Note Math., New York: Springer-Verlin Heidelberg, New York, 1971.
[2] Bramant M, Cerutti M C. Commutators of singular integrals and fractional integrals on homogeneous space[J]. Contem. Math., 1995, 189: 83–93.
[3] Gao W H, Gao Y H. Boundedness of sub-linear operator on the weak Herz-Morrey spaces on homogeneous space[J]. J. Xinjiang Univ. (Natu. Sci. Edit.), 2003, 20: 225–230.
[4] Betancor J J. A commutator theorem for fractional integrals in space of homogeneous type[J]. Internat. J. Math. & Math. Sci., 2000, 24(6): 403–418.
[5] 胡国恩, 王卫红. 齐性空间上极大交换子的一个加权估计[J]. 数学学报(中文版), 2010, 53(1): 141–152.
[6] 陶双平, 曹薇. 齐型空间上的弱Morrey-Herz空间中一类次线性算子交换子的有界性[J]. 数学杂志, 2011, 31(1): 115–122.
[7] 范大山, 杨大春. 齐型空间上Morrey空间的算子有界性及其应用[J]. 数学学报, 1997, 42(4): 583–590.
[8] Pan W J. Fracional integral and weighted inequalities of maximum functions on spaces of homogeneous type[J]. Acta. Sci. Natu. Univ. Peki., 1990, 26(5): 543–553.
[9] Macías R A, Segovia C. Lipschitz functions on spaces of homogeneous type[J]. Adv. Math., 1979, 33: 271–309. DOI:10.1016/0001-8708(79)90013-6
[10] Wang W H, Wu H X. Weighted weak type estimates for commutators of fractional integrals on space of homogeneous type[J]. Acta. Sci., 2009, 29(3): 553–563.
[11] Bramant M, Cerutti M C. Commutators of singular integrals on homogeneous spaces[J]. Boll. Unione Mat. Ital., VⅡ. Ser., B, 1996, 10(4): 843–883.
[12] Pérez C. Endpoint estimates for commutators of singular integral operators[J]. J. Func. Anal., 1995, 128(1): 163–185. DOI:10.1006/jfan.1995.1027
[13] 侯兴华, 朱月萍. 非齐空间中一类次线性算子的交换子在Morrey-Herz空间上的有界性[J]. 数学研究, 2011, 44(3): 283–295.
[14] Paluszynski M. Characterization of the Besov spaces via the commutator operator of Coifman, Rochbeg and Weiss[J]. Indiana Univ. Math., 1995, 44(1): 1–18.
[15] Genebashvili I, Gogatishvili A, Kokilashvili V, Krbec M. Weighted theory for integral transforms on space of homogeneous type[M]. Addison-Wesley Longman (Reading, Mass.), 1998.
[16] 王丽娟, 束立生. 一类次线性算子交换子在Morrey-Herz空间上的有界性[J]. 南京大学学报(数学半年刊), 2013, 30(1): 104–114.