|
摘要: |
本文研究了G-布朗运动指数泛函的矩估计的问题.利用拉普拉斯变换的方法,获得了At=∫0texp (λ(Bs+μs)) ds (λ ∈ R+,μ ∈ R) n阶矩的上下界.利用对称随机游动构造G-布朗运动指数泛函离散化形式的方法,推广了Y=∫0∞exp (Bt+μt) dt p阶矩的上下界. |
关键词: G-布朗运动 次线性空间 G-正态分布 拉普拉斯变换 积分矩 |
DOI: |
分类号:0211.6 |
基金项目:国家自然科学基金资助(11971101). |
|
THE MOMENTS OF EXPONENTIAL FUNCTIONAL OF G-BROWNIAN MOTION |
HU Xin-yu,YAN Li-tan,GUO Meng-fan
|
Abstract: |
In this note, we investigate the exponential functional of G-Brownian Motion.Based on the Laplace transform, we derive the upper bound and lower bound of At=∫0texp(λ(Bs + μs)) ds(λ ∈ R+, μ ∈ R). With the help of suitable symmetric random walks, we construct the approximation to G-Brownian Motion, then generalize the upper bound and lower bound of moments of Y=∫0∞exp(Bt + μt) dt. |
Key words: G-Brownian motion nonlinear expectation space G-normal distribution laplace transform integral moments |