在快速发展的金融市场, 金融衍生品的定价问题一直以来都是人们关注的焦点, 其中亚式期权作为股票期权衍生的一种新式期权, 其特殊性在于它是通过相关证券在合同期间某段时间内的平均价格来决定回报, 这就既减少了合同期内价格浮动对期权定价的影响, 同时也能较为准确地反映资产价格的浮动趋势. 在经典的Black-Scholes期权定价模型中, 亚式期权的定价问题等价于布朗运动指数泛函的分布问题, 可以表示为以下数学形式, 若$ \tilde{B}(t) $为标准布朗运动
其中$ S(t) $为定价过程, $ A(t) $为平均定价过程.
近些年来, 众多学者对布朗运动指数泛函的相关问题进行了广泛研究. Marc.Yor[1], Dufresne.Daniel[2-3]研究了指数泛函的分布问题并将其应用于风险理论与年金问题中. Tamás.Szabados[4-6]利用对称随机游动构造出指数泛函的离散化形式, 进一步研究其矩问题.
然而Black-Scholes定价公式本身的一些假设与现实存在差距. 比如金融资产价格服从对数正态分布, 且波动率为常数. 但实际上, 波动率可能是不确定的, 不一定是常数. $ G- $布朗运动的参数在一个区间内变化, 更加符合复杂多变的金融市场. 在不确定问题、风险测度和金融中的超套期保值问题的驱动下, 彭实戈[7-8]院士提出了次线性空间的概念, 这是概率空间的一个推广. $ G- $正态分布与$ G- $布朗运动在次线性期望理论中起着正态分布与布朗运动在线性期望中相同重要的作用.
本文将布朗运动指数泛函推广至相应$ G- $布朗运动的情况. 第二节中我们将首先介绍$ G- $布朗运动的基本定义与相关性质. 第三节中我们将借助拉普拉斯变换, 讨论$ G- $布朗运动指数泛函$ A_{t} = \int_{0}^{t}\exp(\lambda(B_{s}+\mu s))\mathrm {ds} $的$ n $阶矩的上下界, 其中$ B_{t} $服从$ G- $正态分布$ N(0, [\underline{\sigma}^{2}t, \overline{\sigma}^{2}t])(0<\underline{\sigma}<\overline{\sigma}) $. 第四节中我们在Tam$ \acute{a} $s.Szabados[4]的基础上, 借助对称随机游动的“扭曲与伸缩”, 构造$ G- $布朗运动的近似序列,进而推导出$ Y = \int_{0}^{\infty}\exp(B_{t}+\mu t)\mathrm {dt} $的离散化形式$ Y_{m, n} $, 当$ n\rightarrow \infty $时, $ Y_{m, n}\rightarrow Y_{m}, \ Y_{m} = 2^{-2m}(1+\xi_{m1}+\xi_{m1}\xi_{m2}+\cdots+\xi_{m1}\xi_{m2}\cdots) $. 当$ m\rightarrow \infty $时, $ Y_{m}\rightarrow Y $, 进而计算出$ Y $的p阶矩的上下界.
定义2.1 令$ \Omega $为给定非空集合, $ \mathbb{H} $为定义在$ \Omega $上的由全体实值函数组成的线性空间, 且满足$ 1\in\mathbb{H} $; 若$ X\in\mathbb{H} $, 则$ \vert X\vert\in\mathbb{H} $; 若$ \varphi\in C_{b, Lip}(\mathbb{R}^{d}), \ X_{i}\in\mathbb{H}, \ i = 1, 2, \cdots, d, $则有$ \varphi(X_{1}, X_{2}, \cdots, X_{d})\in\mathbb{H} $. 其中$ C_{b, Lip(\mathbb{R}^{d})} $表示$ \mathbb{R}^{d} $上的全体有界Lipschitz函数的集合. 如果定义在$ \mathbb{H} $上的函数$ \hat{\mathbb{\mathbb{E}}} $满足对任意$ X, Y\in\mathbb{H} $, 有
(1) 单调性: 若$ X\geq Y $, 那么$ \hat{\mathbb{\mathbb{E}}}[X]\geq\hat{\mathbb{\mathbb{E}}}[Y] $,
(2) 保常性: 对任意$ c\in\mathbb{R} $, 有$ \hat{\mathbb{\mathbb{E}}}[c] = c $,
(3) 次可加性: $ \hat{\mathbb{\mathbb{E}}}[X+Y]\leq\hat{\mathbb{\mathbb{E}}}[X]+\hat{\mathbb{\mathbb{E}}}[Y] $,
(4) 正齐次性: 若$ \lambda\geq0 $, 则$ \hat{\mathbb{\mathbb{E}}}[\lambda X] = \lambda\hat{\mathbb{\mathbb{E}}}[X] $,
则称函数$ \hat{\mathbb{\mathbb{E}}} $为次线性期望. $ (\Omega, \mathbb{H}, \hat{\mathbb{\mathbb{E}}}) $为次线性期望空间, 其中$ \mathbb{H} $被看作是$ \Omega $上的随机变量空间.
定义2.2 在次线性期望空间$ (\Omega, \mathbb{H}, \hat{\mathbb{\mathbb{E}}}) $中, 随机过程$ \{B_{t}, t\geq0\}\in\mathbb{H} $叫做$ G- $布朗运动, 如果满足以下条件
(1) $ B_{0} = 0 $, (2) 对每个$ t, s\geq0 $, 增量$ B_{t+s}-B_{t} $服从$ G- $正态分布$ N(0, [\underline{\sigma}^{2}s, \overline{\sigma}^{2}s]) $分布且其与$ (B_{t_1}, B_{t_2}, \cdots, B_{t_n}) $独立, 其中$ n\in\mathbb{N}, \ 0\leq t_{1}\leq t_{2}\leq\cdots\leq t_{n}\leq t. $
$ G- $布朗运动满足以下性质
(1) 对$ \xi\in\mathbb{L}^{2}(\Omega_t) $, 有$ \hat{\mathbb{\mathbb{E}}}[\xi(B_{T}-B_{t})] = 0, \ 0\leq t\leq T $,
(2) 对$ \mathscr{B}(\Omega_{t}) $可测实值有界函数$ \xi $, 满足$ \hat{\mathbb{\mathbb{E}}}[\xi^{2}(B_{T}-B_{t})^{2}]\leq\overline{\sigma}^{2}(T-t)\hat{\mathbb{\mathbb{E}}}[\xi^{2}], \ 0\leq t\leq T $,
(3) 对$ t\geq0 $, 有$ \hat{\mathbb{\mathbb{E}}}[B_{t}] = \hat{\mathbb{\mathbb{E}}}[-B_{t}] = 0 $,
(4) 当$ t\rightarrow \infty $时, $ B_{t} $拟必然H$ \ddot{o} $lder连续, 其中$ \delta<\frac{1}{2} $.
定理3.1 若$ \mu\geq0, \ n\in\mathbb{N} $, 且$ \alpha>\varphi(\overline{\sigma}(\mu+n)) $, 则有
证 首先对任意$ x\in\mathbb{R} $, 定义$ \varphi(x) = \frac{x^{2}}{2}. $
若$ B_{t} $为$ G- $布朗运动, 服从$ G- $正态分布$ N(0, [\underline{\sigma}^{2}t, \overline{\sigma}^{2}t]) $, 对任意$ \lambda\in\mathbb{R} $
若$ \tilde{B_{t}} $为标准布朗运动, 则有$ \mathbb{E}[\exp(\lambda\tilde{B_{t}})] = \exp(t\varphi(\lambda)). $
接下来定义
由公式(3.2) 可得
将公式(3.4) 代入公式(3.3) 得
由公式(3.5) 可知, 当$ \alpha>\varphi(\overline{\sigma}(\mu+n)) = \frac{\overline{\sigma}^{2}(\mu+n)^{2}}{2} $时, 公式(3.1) 右边得证.
同理当$ \alpha>\varphi(\underline{\sigma}(\mu+n)) = \frac{\underline{\sigma}^{2}(\mu+n)^{2}}{2} $时, 公式(3.1) 左边得证.
定理3.2 若$ \mu\geq0, n\in\mathbb{N} $, 且$ t\geq0 $, 则有
其中
证
将公式(3.8) 代入公式(3.5) 得到
从而可以推出
同理可得
定理3.3 若$ \lambda\in\mathbb{R}, \ n\in\mathbb{N} $, 且$ t\geq0 $, 则有
其中$ P_{n}(z) = 2^{n}(-1)^{n}\{\frac{1}{n!}+2\sum\limits_{j = 1}^{n}\frac{n!(-z)^{j}}{(n-j)!(n+j)!}\} $.
证 对公式(3.6), 取$ \mu = 0 $, 且将$ B_{s} $替换为$ \lambda B_{s} $, 则有
其中$ P_{n}^{(0)}(z) = n!\sum\limits_{j = 0}^{n}C_{j}^{(0)}z^{j}, \ C_{j}^{(0)} = \prod\limits_{\substack{k\neq j\\0\leq k\leq n}}(\varphi(\overline{\sigma}\lambda j)-\varphi(\overline{\sigma}\lambda k))^{-1} $.
当$ j = 0 $时,
当$ 1\leq j\leq n $时,
进而可得
记$ P_{n}(z) = 2^{n}(-1)^{n}\{\frac{1}{n!}+2\sum\limits_{j = 1}^{n}\frac{n!(-z)^{j}}{(n-j)!(n+j)!}\} $, 代入公式(3.12) 可得
定理3.4 若$ \lambda\in\mathbb{R}, \mu\in\mathbb{R}, n\in\mathbb{N} $, 且$ t\geq0 $, 则有
证 记
结合定理3.1可推出
进而将公式(3.19) 代入公式(3.18) 可推出
定理3.5 若$ \lambda\in\mathbb{R}, \ n\in\mathbb{N} $, 且$ t\geq0 $, 则有
证 对定理3.4, 取$ \nu = 0 $, 将$ B_{s}+\mu s $替换为$ \lambda(B_{s}+\mu s) $, 则有
记
参考Tamás.Szabados[5]提出的方法, 我们可以借助“扭曲与收缩”对称随机游动来定义标准布朗运动的一种近似序列, 即将单位一的步长压缩至$ 1/2^{m}, m = 1, 2, \cdots $, 对应完成该步长的时间被压缩至$ 1/2^{2m}, m = 1, 2, \cdots $.接下来我们将简述这一方法.
定义序列$ \{\tilde{S}_{m}(k), k\geq 0\} $满足以下条件
其中$ \tilde{X}_{m}(k), m\geq 0, k\geq 1 $是独立同分布随机游动且满足
接下来可以定义标准布朗运动$ \tilde{B}_{t} $的m阶近似序列
即$ \tilde{B}_{m}(t) $为标准布朗运动$ \tilde{B}_{t} $在时刻$ j/2^{m}, j = 1, 2\cdots $的一个“分割模型”.
引理4.1 定义序列$ \tilde{Y}_{m} = 2^{-2m}(\sum\limits_{k = 0}^{\infty}\exp(2^{-m}\tilde{S}_{m}(k)+\mu k2^{-2m})) $, 当$ m\rightarrow \infty $时, $ \tilde{Y}_{m} $几乎处处收敛于$ \tilde{Y} = \int_{0}^{\infty}\exp(\tilde{B}_{t}+\mu t)\mathrm {dt} $.
参考[7]注释3.4知存在序列$ X_{m}(k) $服从$ G- $正态分布$ N(0, [\underline{\sigma}^{2}, \overline{\sigma}^{2}]) $, $ \frac{1}{\sqrt{n}}\sum\limits_{i}^{n}X_{m}(i) $依分布收敛于$ X $, $ X $服从$ G- $正态分布$ N(0, [\underline{\sigma}^{2}, \overline{\sigma}^{2}]) $. 从而可推出序列$ \{S_{m}(k), k\geq 0\} $满足以下条件
$ \{B_{m}(t) = 2^{-m}S_{m}(t2^{2m}), t\geq 0\} $为$ G- $布朗运动$ B_{t} $的m阶近似序列.
推论4.2 定义序列$ Y_{m} = 2^{-2m}(\sum\limits_{k = 0}^{\infty}\exp(2^{-m}S_{m}(k)+\mu k2^{-2m})) $, 当$ m\rightarrow \infty $时, $ Y_{m} $几乎处处收敛于$ Y = \int_{0}^{\infty}\exp(B_{t}+\mu t)\mathrm {dt} $, 进而我们完成了$ G- $布朗运动指数泛函离散化形式的构造.
定理4.3 对任意正整数$ p $, 当$ \mu<-\frac{\overline{\sigma}^{2}}{2}p $时, $ \hat{\mathbb{E}}(Y_{m}^p) = \frac{1}{1-\hat{\mathbb{E}}(\xi_{m}^{p})}\sum\limits_{k = 0}^{p-1}\binom{p}{k}2^{-2m(p-k)}\hat{\mathbb{E}}(\xi_{m}^{k})\mathbb{E}(Y_{m}^{k}) $.
证 对任意$ m\geq 0, \ n\geq1 $, 定义序列$ Y_{m, n} $满足$ Y_{m, n} = 2^{-2m}\sum\limits_{k = 0}^{n}\exp(2^{-m}S_{m}(k)+\mu k2^{-2m}) = 2^{-2m}(1+\xi_{m1}+\xi_{m1}\xi_{m2}+\cdots+\xi_{m1}\xi_{m2}\cdots\xi_{mn}), $其中$ Y_{m, 0} = 2^{-2m}, \xi_{mj} = \exp(2^{-m}X_{m}(j)+\mu 2^{-2m}) $. 当$ n\rightarrow \infty $时, $ Y_{m, n}\rightarrow Y_{m}, \ \ Y_{m} = 2^{-2m}(1+\xi_{m1}+\xi_{m1}\xi_{m2}+\cdots+\xi_{m1}\xi_{m2}\cdots), $且$ Y_{m} $满足分布自相似性
$ \xi_{m}\overset{d}{ = }\xi_{m1} $, 且$ \xi_{m} $与$ Y_{m} $相互独立, 其中$ \overset{d}{ = } $表示同分布. 对任意$ m\geq 0, \ k $为整数
当$ \frac{\overline{\sigma}^{2}}{2}k+\mu<0 $, 即$ \mu<-\frac{\overline{\sigma}^{2}}{2}k $时, $ \hat{\mathbb{E}}(\xi_{m}^{k})<1 $. 当$ m\rightarrow \infty $时, 由$ \exp(x) = 1+x+o(x) $可得
当$ \mathbb{E}(\xi_{m}^{p})<1, \ p\geq1 $时, 对公式(4.4) 两边取$ p $阶矩可得
定理4.4 对任意正整数$ p $, 当$ \mu<-\frac{\overline{\sigma}^{2}}{2}p $时, $ \frac{1}{\prod\limits_{k = 1}^{p}-(\frac{\underline{\sigma}^{2}}{2}k+\mu)}<\lim\limits_{m\rightarrow \infty}\hat{\mathbb{E}}(Y_{m}^{p})<\frac{1}{\prod\limits_{k = 1}^{p}-(\frac{\overline{\sigma}^{2}}{2}k+\mu)}<\infty. $
证 由公式(4.6) 知, 当$ m\rightarrow \infty $时
将(4.8)–(4.10) 式代入公式(4.7) 可得
进而通过迭代可得
同理当$ m\rightarrow \infty $时, $ \hat{\mathbb{E}}(\xi_{m}^{p})>1+p2^{-2m}(\frac{\underline{\sigma}^{2}}{2}p+\mu)+o(2^{2m}) $, 可得