|
摘要: |
本文研究了二阶离散周期边值问题 Δ2u(t-1)+f(t,u(t),Δu(t-1))=s,t∈[1,T]Z, u(0)-u(T)=Δu(0)-Δu(T)=0 解的个数与参数s的关系,其中f(t,u,v):[1,T]Z×R2→R关于(u,v)∈R2连续,s∈R.利用上下解方法和拓扑度理论,获得了Ambrosetti-Prodi型结果,推广了已有文献的相关结果. |
关键词: 二阶周期边值问题 Ambrosetti-Prodi型结果 上下解方法 拓扑度理论 |
DOI: |
分类号:O175.8 |
基金项目:国家自然科学基金资助(12061064),西北师范大学研究生科研资助(2020KYZZ001109). |
|
AMBROSETTI-PRODI TYPE RESULTS FOR NONLINEAR SECOND-ORDER DISCRETE PERIODIC BOUNDARY VALUE PROBLEMS |
ZHAO Jiao
|
Abstract: |
In this paper, we discuss the relationship between the number of the solutions for second-order discrete periodic boundary value problem Δ2u(t-1)+f(t, u(t), Δu(t-1))=s, t∈[1, T]Z, u(0) -u(T)=Δu(0)-Δu(T)=0 and the parameter s, where f(t, u, v):[1, T]Z×R2→R is continuous with respect to (u, v)∈R2, s∈R. By using the method of the upper and lower solutions and topological degree techniques, Ambrosetti-Prodi type result is obtained, and some related conclusions on this topic are generalized. |
Key words: second-order periodic BVPs Ambrosetti-Prodi type results upper and lower solutions topological degree techniques |