|
摘要: |
本文研究了一类含多个奇性项的Grushin型算子方程非平凡解的渐近性质问题.当方程的非线性项满足临界指数增长条件时,利用Moser迭代方法和分析技巧,获得了方程的非平凡解在奇点处的渐近性质,推广了Laplace算子的相关结果. |
关键词: Grushin型算子 多奇性项 渐近性质 Moser迭代 |
DOI: |
分类号:O175.29 |
基金项目:国家自然科学基金资助(11761049). |
|
ASYMPTOTIC PROPERTIES OF SOLUTION TO GRUSHIN-TYPE OPERATOR PROBLEMS WITH MULTI-SINGULAR POTENTIALS |
ZHANG Jin-guo,YANG Deng-yun
|
Abstract: |
In this paper, we investigate a Grushin-type operator problem involving the multi-singular potentials. By using the Moser iteration method and analytic techniques, the asymptotic properties of the nontrivial solutions at the singular points are obtained. These results generalize the related results of the Laplacian operator. |
Key words: Grushin-type operator multi-singular potentials asymptotic behavior Moser iteration |