数学杂志  2021, Vol. 41 Issue (1): 79-87   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
张金国
杨登允
一类含多奇性项的Grushin型算子方程解的渐近性质
张金国, 杨登允    
江西师范大学数学与统计学院, 江西 南昌 330022
摘要:本文研究了一类含多个奇性项的Grushin型算子方程非平凡解的渐近性质问题.当方程的非线性项满足临界指数增长条件时,利用Moser迭代方法和分析技巧,获得了方程的非平凡解在奇点处的渐近性质,推广了Laplace算子的相关结果.
关键词Grushin型算子    多奇性项    渐近性质    Moser迭代    
ASYMPTOTIC PROPERTIES OF SOLUTION TO GRUSHIN-TYPE OPERATOR PROBLEMS WITH MULTI-SINGULAR POTENTIALS
ZHANG Jin-guo, YANG Deng-yun    
School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022, China
Abstract: In this paper, we investigate a Grushin-type operator problem involving the multi-singular potentials. By using the Moser iteration method and analytic techniques, the asymptotic properties of the nontrivial solutions at the singular points are obtained. These results generalize the related results of the Laplacian operator.
Keywords: Grushin-type operator     multi-singular potentials     asymptotic behavior     Moser iteration    
1 引言

本文主要研究如下含多个奇性项和临界指数增长的非线性次椭圆型方程的非平凡解在奇点处的渐近性质

$ \begin{equation} \left\{ \begin{aligned} &-(\Delta _x + |x|^{2\alpha }\Delta _y) u - \mu \frac{\prod_{i = 1}^{k}\psi_{i}^{2}u}{\prod_{i = 1}^{k} d(z, a_{i})^2} = f(z, u), \quad &z\in\Omega , \\ &\quad u = 0, &z\in\partial \Omega, \end{aligned} \right. \end{equation} $ (1.1)

其中$ \Omega $$ \mathbb {R}^N: = \mathbb {R}^m\times \mathbb {R}^n $中的开集, $ k\geq 2 $, $ a_{i}\in \Omega $ ($ i = 1, 2, \cdots, k $)且互不相同, $ 0\leq \mu<\mu_{G}: = (\frac{Q-2}{2})^{2} $, 这里$ (\frac{Q-2}{2})^{2} $是最佳Hardy常数; $ \alpha>0 $, $ \Delta _x + |x|^{2\alpha }\Delta _y $是Grushin型算子, $ Q = m+(\alpha+1)n $是空间$ \mathbb {R}^m\times \mathbb {R}^n $的齐次维数.对任意的$ z = (x, y) $, $ a_{i} = (a_{i}^{1}, a_{i}^{2})\in \Omega\subset \mathbb{R}^{m}\times\mathbb{R}^{n} $, $ \psi_{i} = |\nabla_{\alpha}d(z, a_{i})| = (\frac{|x-a_{i}^{1}|}{d(z, a_{i})})^{\alpha} $, 其中$ d(z, a_{i}) $表示在Grushin向量场意义下点$ z $与点$ a_{i} $之间的距离, 其定义如下:

$ \begin{equation} d(z, a_{i}) = \Big(|x-a_{i}^{1}|^{2(\alpha +1)}+(\alpha +1)^2|y-a_{i}^{2}|^2\Big)^{\frac{1}{2(\alpha +1)}}. \end{equation} $ (1.2)

此外, 非线性项$ f: \Omega \times \mathbb {R}\to\mathbb {R} $是Carathéodory函数, 且满足

$ \begin{equation} |f(z, t)|\leq C(|t|^{q-1}+ |t|^{2^{*}-1}), \quad \forall (z, t)\in \Omega\times\mathbb{R}, \end{equation} $ (1.3)

其中$ C>0 $是常数, $ 2^* = \frac{2Q}{Q-2} $是临界Sobolev指数.

$ X_i = \frac{\partial }{\partial x_i} \, \, ( i = 1, \ldots , m), \quad X_{m+j} = |x|^\alpha \frac{\partial }{\partial y_j}\, \, (j = 1, \ldots , n). $

则Grushin梯度为$ \nabla _\alpha = (X_1, \ldots , X_N) $, 由此Grushin型算子可表示为

$ \begin{equation} \Delta _x + |x|^{2\alpha }\Delta _y = \text{div}_{\alpha}(\nabla_{\alpha}) = \sum\limits_{i = 1}^{m}X_{i}^{2}+\sum\limits_{j = 1}^{n}X_{m+j}^{2}. \end{equation} $ (1.4)

显然:当$ x\neq 0 $时, 该算子是椭圆型的, 并且在流形$ \{0\}\times \mathbb {R}^n $上是退化的; 当$ \alpha $是非负整数时, Grushin算子是Hörmander型的.其它相关知识可以参见[1-5]等.

对任意的$ \Omega \subset \mathbb {R}^N $, 范数$ \| u\|_{D^{1, 2}_{\alpha}} = (\int _{\Omega } |\nabla _\alpha u|^2 dz)^{\frac{1}{2}} $下的$ C^\infty _0(\Omega ) $完备化空间记为$ D_{\alpha}^{1, 2}(\Omega) $.对$ \forall u\in D_{\alpha}^{1, 2}(\Omega) $, 设方程(1.1)的能量泛函为

$ \begin{equation} I(u) = \frac{1}{2}\int _{\Omega } |\nabla _\alpha u|^2 dz- \frac{\mu}{2}\int _{\Omega } \frac{\prod_{i = 1}^{k}\psi_{i}^{2}|u|^{2}}{\prod_{i = 1}^{k} d(z, a_{i})^2}dz- \int_{\Omega}F(z, u)dz, \end{equation} $ (1.5)

其中$ F(z, t) = \int_{0}^{t}f(z, \eta)d\eta $.若$ u\in D_{\alpha}^{1, 2}(\Omega) $是方程(1.1)的解, 则对任意$ v\in C^{\infty}_{0}(\Omega) $

$ \begin{equation} \langle I'(u), v\rangle = \int _{\Omega } \nabla _\alpha u \nabla _\alpha v dz- \mu\int _{\Omega } \frac{\prod_{i = 1}^{k}\psi_{i}^{2}uv}{\prod_{i = 1}^{k} d(z, a_{i})^2}dz- \int_{\Omega}f(z, u)vdz. \end{equation} $ (1.6)

为了应用变分方法处理(1.1), 我们需要如下的Hardy不等式:

$ \begin{equation} \int _{\Omega} |\nabla _\alpha u|^2 dz \geq \mu_{G} \int _{\Omega } \psi ^2 \frac{|u|^2}{d(z, a)^2}dz, \quad \forall u\in C_0^{\infty }(\varOmega ), \end{equation} $ (1.7)

其中$ \mu_{G } = ( \frac{Q-2}{2} )^2 $是Grushin向量场下Hardy型不等式的最佳常数, $ a\in\Omega $.

在文[6]中作者研究了如下含多个奇性项的退化次椭圆问题:

$ \begin{equation} \left\{ \begin{aligned} &-\Delta_{G}u -\sum\limits_{i = 1}^{k}\mu_{i} \frac{\psi ^2}{ d(z, a_{i})^2} u = f(z, u), \qquad &\quad z\in\Omega , \\ &u = 0, & z\in\partial \Omega, \end{aligned} \right. \end{equation} $ (1.8)

其中$ \Omega $是Carnot群上的开集, $ -\Delta_{G} $是Carnot群上的Laplace算子, $ k\geq 2 $, 实数$ a_{i}\in \Omega $ ($ i = 1, 2, \cdots, k $)互不相同, $ \mu_{i}\geq 0 $且满足$ \sum\limits_{i = 1}^{k}\mu_{i}<\mu_{C} = (\frac{C-2}{2})^{2} $, $ C $是Carnot群的齐次维数.方程(1.8)与如下Carnot群上的Hardy型不等式有关:

$ \begin{equation} \int _{\Omega} |\nabla _{G} u|^2 dz \geq\sum\limits_{i = 1}^{k} \mu_{i} \int _{\Omega } \psi ^2 \frac{|u|^2}{d(z, a_{i})^2}dz, \quad \forall u\in S_0^{1}(\Omega ). \end{equation} $ (1.9)

类似于Carnot群上的证明方法, 可以建立Grushin向量场下的多奇性项Hardy型不等式:

$ \begin{equation} \int _{\Omega} |\nabla _{\alpha} u|^2 dz \geq\sum\limits_{i = 1}^{k} \mu_{i} \int _{\Omega } \psi_{i}^2 \frac{|u|^2}{d(z, a_{i})^2}dz, \quad \forall u\in D_{\alpha}^{1, 2}(\Omega ). \end{equation} $ (1.10)

结合(1.7), (1.10)式, 可以得到如下的广义Hardy型不等式:

$ \begin{equation} \int _{\Omega} |\nabla _\alpha u|^2 dz \geq \mu^{*}_{G} \int _{\Omega } \frac{\prod_{i = 1}^{k} \psi_{i}^2|u|^2}{ \prod_{i = 1}^{k}d(z, a_{i})^2}dz, \quad \forall u\in D_{\alpha}^{1, 2}(\Omega ), \end{equation} $ (1.11)

其中$ \mu^{*}_{G} $是广义Hardy型不等式的最佳常数.不等式(1.11)的证明将在第二节中给出.

假设$ k\geq 2 $, 对任意的$ i = 1, 2, \cdots, k $, 定义

$ \mu_{i} = \frac{\mu}{\prod\limits_{j = 1, j\neq i}^{k}d(a_{i}, a_{j})^{2}}. $

利用Moser迭代技巧, 本文讨论了方程(1.1)的非平凡解在奇点处的渐近性质.结论如下.

定理1.1   设$ \Omega $$ \mathbb {R}^m\times\mathbb {R}^n $中的开集, $ a_{j}\in \Omega $ $ (j = 1, 2, \cdots, k) $且互不相等. $ 0<\mu<\mu^{*}_{G} $, $ \sum\limits_{i = 1}^{k}\mu_{i}<(\frac{Q-2}{2})^{2} $.若$ u\in D_{\alpha }^{1, 2}(\Omega ) $是方程(1.1)的非平凡弱解, 则

(i) 存在常数$ C $, $ \rho_{i}>0 $使得

$ \begin{equation} |u(z)|\le \frac{C}{d(z, a_{i})^{\frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu_{i} }}}, \quad \forall z\in B_{d}(a_{i}, \rho_{i})\backslash \{a_{i}\}, \end{equation} $ (1.12)

其中$ B_{d}(a_{i}, \rho_{i}) $表示在距离$ d $的意义下以$ a_{i} $为圆心, 以$ \rho_{i} $为半径的球, 且$ a_{j}\not\in B_{d}(a_{i}, \rho_{i}) $, $ i, j = 1, 2, \cdots , k $, $ i\neq j $.

(ii) 存在常数$ C>0 $使得

$ \begin{equation} |u(z)|\le C\sum\limits_{i = 1}^{k}\frac{1}{d(z, a_{i})^{\frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu_{i} }}}, \quad \forall z\in \Omega\backslash \{a_{1}, a_{2}, \cdots a_{k}\}. \end{equation} $ (1.13)

在欧式空间中, 关于Laplace算子问题的相关结论可参考[7].利用Moser迭代和分析技巧, 我们在第二节给出定理1.1的证明.对于退化的Grushin型算子和Carnot群上的次椭圆算子而言, 该结论依然是新的.

2 定理1.1的证明

首先给出广义Hardy型不等式(1.11)的证明.

不等式(1.11)的证明 令$ \rho = \min\{\frac{1}{2}d(a_{i}, a_{l}), d(a_{i}, \partial\Omega)\} $, $ i, \, l = 1, 2, \cdots, k $, $ i\neq l $.则$ B_{d}(a_{i}, \rho)\cap B_{d}(a_{l}, \rho) = \emptyset $, 其中$ B_{d}(a, \rho) = \{x:x\in \Omega, d(x, a)<\rho\} $.由不等式(1.7)和$ \psi_{i}<1 $ ($ i = 1, 2, \cdots, k $)可得

$ \begin{equation} \begin{aligned} \int _{\Omega } \frac{\prod_{i = 1}^{k}\psi_{i}^2|u|^2}{\prod_{i = 1}^{k}d(z, a_{i})^2}dz & = \sum\limits_{i = 1}^{k}\int _{B_{d}(a_{i}, \rho) } \frac{\prod_{i = 1}^{k}\psi_{i}^2|u|^2}{\prod_{i = 1}^{k}d(z, a_{i})^2}dz+ \int _{\Omega\backslash \bigcup\limits_{i = 1}^{k}B_{d}(a_{i}, \rho) } \frac{\prod_{i = 1}^{k}\psi_{i}^2|u|^2}{\prod_{i = 1}^{k}d(z, a_{i})^2}dz\\ &\leq \frac{1}{\rho^{2(k-1)}} \sum\limits_{i = 1}^{k}\int _{B_{d}(a_{i}, \rho) } \psi_{i}^2 \frac{|u|^2}{d(z, a_{i})^2}dz+ \frac{1}{\rho^{2k}} \int _{\Omega\backslash \bigcup\limits_{i = 1}^{k}B_{d}(a_{i}, \rho) } |u|^2dz\\ &\leq \frac{1}{\rho^{2(k-1)}}\sum\limits_{j = 1}^{k}\int _{\Omega} \frac{|u|^2}{d(z, a_{j})^2}dz+\frac{1}{\rho^{2k}}\int _{\Omega} |u|^{2}dz\\ &\leq C(\Omega, k, \rho)\|u\|_{D^{1, 2}_{\alpha}}^{2}. \end{aligned} \end{equation} $ (2.1)

因此, 不等式(1.11)得证.上述结论表明广义Hardy型不等式的最佳常数可如下定义:

$ \mu^{*}_{G} = \inf\limits_{u\in D^{1, 2}_{\alpha}(\Omega)\backslash\{0\}} \frac{\|u\|_{D^{1, 2}_{\alpha}}^{2}}{\int _{\Omega } \frac{ \prod_{i = 1}^{k}\psi_{i}^2 |u|^2}{\prod_{i = 1}^{k}d(z, a_{i})^2}dz}\geq \frac{1}{C(\Omega, k, \rho)}>0. $

为了估计方程(1.1)的非平凡解在原点处的渐近性质, 我们需要如下的$ L^p $估计.

引理2.2   设$ \Omega \subset \mathbb{R}^m\times \mathbb{R}^{n} $$ 0 $的有界领域, $ 0\leq \mu <\mu^{*}_{G} $, $ \sum\limits_{i = 1}^{k}\mu_{i}<\mu_{G} $.假设$ V\in L^{\frac{Q}{2}}(\Omega ) $, $ g\in L^q(\Omega ) $, $ q\geq 2 $, 常数$ \nu $使得线性算子$ -(\Delta_{x}+|x|^{2\alpha}\Delta_{y}) - \mu \frac{\prod_{i = 1}^{k}\psi_{i}^2}{\prod_{i = 1}^{k}d(z, a_{i})^2}-V +\nu $是正定的.若$ u\in D_{\alpha }^{1, 2}(\Omega ) $是方程

$ \begin{equation} -(\Delta_{x}+|x|^{2\alpha}\Delta_{y}) u - \mu \frac{\prod_{i = 1}^{k}\psi_{i}^2}{\prod_{i = 1}^{k}d(z, a_{i})^2}u-V u +\nu u = g, \quad z\in \Omega, \end{equation} $ (2.2)

的非平凡解, 则$ u\in L^p(\Omega ) $, $ \forall 1\leq p\leq p_{\text{lim}} = 2^* \min \left\{ \frac{q}{2}, \frac{\frac{Q-2}{2}}{\frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\sum\limits_{i = 1}^{k}\mu_{i} }}\right\} . $

证明  引理2.2的证明与[1, 命题3.2]或[7, 引理3.1]证明过程类似.此处略.

为了研究方程解在奇点处的渐近性质, 我们将$ \Omega $做如下分解

$ \Omega = \Omega_{1}\cup \Omega_{2}\cup \cdots \cup \Omega_{k}, $

并且$ a_{i}\in \Omega_{i} $, $ a_{j}\not\in\overline{\Omega}_{i} $ $ (i\neq j) $, $ i = 1, 2, \cdots, k $.

定理1.1的证明  设$ u\in D_{\alpha }^{1, 2}(\Omega ) $是方程(1.1)的解.令

$ \begin{equation} v: = d(z, a_{i})^{\beta }u, \end{equation} $ (2.3)

其中$ \beta = \frac{Q-2}{2}-\sqrt{(\frac{Q-2}{2})^{2}-\mu_{i}} $是方程$ \beta^{2}-\beta(Q-2)+\mu_{i} = 0 $的解.则由Hardy不等式可知$ v\in D_{\alpha}^{1, 2}(\Omega , d(z, a_{i})^{-2\beta}d z) $, 并且

$ \begin{equation} \begin{aligned} (\Delta_{x}+|x|^{2\alpha}\Delta_{y})u & = (\Delta_{x}+|x|^{2\alpha}\Delta_{y})(d(z, a_{i})^{-\beta}v)\\ & = v[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})d(z, a_{i})^{-\beta}] +d(z, a_{i})^{-\beta}[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})v]\\ &\quad +2\langle \nabla_{\alpha} d(z, a_{i})^{-\beta}, \nabla_{\alpha} v\rangle, \end{aligned} \end{equation} $ (2.4)

其中

$ \begin{equation} \begin{aligned} (\Delta_{x}+|x|^{2\alpha}\Delta_{y})d(z, a_{i})^{-\beta} & = \psi_{i}^{2}[\beta(\beta+1)d(z, a_{i})^{-\beta-2}+\frac{Q-1}{d(z, a_{i})}(-\beta)d(z, a_{i})^{-\beta-1}]\\ & = \psi_{i}^{2}[\beta(\beta+1)d(z, a_{i})^{-\beta-2}-\beta(Q-1)d(z, a_{i})^{-\beta-2}]\\ & = \psi_{i}^{2}[\beta^{2}-\beta(Q-2)]d(z, a_{i})^{-\beta-2}.\\ \end{aligned} \end{equation} $ (2.5)

从而将$ u = d(z, a_{i})^{-\beta}v $带入方程(1.1)的左边, 由(2.4), (2.5)式可得

$ \begin{equation} \begin{aligned} &-(\Delta_{x}+|x|^{2\alpha}\Delta_{y})u- \mu\frac{\prod_{i = 1}^{k}\psi_{i}^2 u}{\prod_{i = 1}^{k}d(z, a_{i})^{2}}\\ = &-v\psi_{i}^{2}[\beta^{2}-\beta(Q-2)]d(z, a_{i})^{-\beta-2} -d(z, a_{i})^{-\beta}[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})v]\\ & -2\langle \nabla_{\alpha} d(z, a_{i})^{-\beta}, \nabla_{\alpha} v\rangle -\mu\frac{\prod_{i = 1}^{k}\psi_{i}^2}{\prod_{i = 1}^{k}d(z, a_{i})^{2}}d(z, a_{i})^{-\beta}v\\ = &-v\psi_{i}^{2}[\beta^{2}-\beta(Q-2)+\mu_{i}]d(z, a_{i})^{-\beta-2} +\frac{\mu_{i}\psi_{i}^{2}v}{d(z, a_{i})^{\beta+2}} -\mu\frac{\prod_{i = 1}^{k}\psi_{i}^2}{\prod_{i = 1}^{k}d(z, a_{i})^{2}}d(z, a_{i})^{-\beta}v\\ & -d(z, a_{i})^{-\beta}[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})v] -2\langle \nabla_{\alpha} d(z, a_{i})^{-\beta}, \nabla_{\alpha} v\rangle\\ = &-d(z, a_{i})^{-\beta}[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})v] -2\langle \nabla_{\alpha} d(z, a_{i})^{-\beta}, \nabla_{\alpha} v\rangle\\ &+\frac{1}{d(z, a_{i})^{\beta}} \Big(\frac{\mu_{i}\psi_{i}^{2}}{d(z, a_{i})^{2}} -\frac{\mu \prod_{i = 1}^{k}\psi_{i}^2}{\prod_{i = 1}^{k}d(z, a_{i})^{2}}\Big)v. \end{aligned} \end{equation} $ (2.6)

结合$ f(z, u) = f(z, d(z, a_{i})^{-\beta}v) $及(1.1), (2.6)可得

$ \begin{equation} \begin{aligned} &-d(z, a_{i})^{-\beta}[(\Delta_{x}+|x|^{2\alpha}\Delta_{y})v] -2\langle \nabla_{\alpha} d(z, a_{i})^{-\beta}, \nabla_{\alpha} v\rangle +\frac{1}{d(z, a_{i})^{\beta}} \Big(\frac{\mu_{i}\psi_{i}^{2}}{d(z, a_{i})^{2}} -\frac{\mu \prod_{i = 1}^{k}\psi_{i}^2}{\prod_{i = 1}^{k}d(z, a_{i})^{2}}\Big)v\\ = &f(z, d(z, a_{i})^{-\beta}v). \end{aligned} \end{equation} $ (2.7)

在(2.7)式两边同时乘上$ d(z, a_{i})^{-\beta} $, 可得

$ \begin{equation} \begin{aligned} -\text{div}_{\alpha } \left( d(z, a_{i})^{-2\beta }\nabla _\alpha v \right) = &d(z, a_{i})^{-\beta } f(z, d(z, a_{i})^{-\beta } v )\\& -\frac{1}{d(z, a_{i})^{2\beta}} \Big(\frac{\mu_{i}\psi_{i}^{2}}{d(z, a_{i})^{2}} -\frac{\mu \prod_{i = 1}^{k}\psi_{i}^2}{\prod_{i = 1}^{k}d(z, a_{i})^{2}}\Big)v, \quad z \in \Omega\backslash \{a_{1}, a_{2}, \cdots, a_{k}\}. \end{aligned} \end{equation} $ (2.8)

$ \rho_{i}>0 $, 使得$ B_{d}(a_{i}, \rho_{i})\subset\Omega $, 并且$ a_{j}\not\in\overline{B}_{d}(a_{i}, \rho_{i}) $, $ i, \, j = 1, 2, \cdots, k $, $ i\neq j $.令$ \rho\in (0, \rho_{i}) $.定义截断函数$ \eta_{i} \in C_{0}^{\infty}( B_{d}(a_{i}, \rho), [0, 1]) $, 使其对$ \forall z\in B_{d}(a_{i}, r) $$ \eta(z) = 1 $, $ |\nabla_{\alpha}\eta|\leq \frac{4}{\rho-r} $, 其中$ r\in (0, \rho) $.定义函数

$ \begin{equation} v_{L} = \min {\{|v|\, , \, L\}}, \qquad\quad \phi: = \eta^2 v v_{L}^{2(s-1)}, \end{equation} $ (2.9)

其中$ L $, $ s>1 $在后面给定.将试验函数$ \phi $代入(2.8)式得

$ \begin{equation} \begin{aligned} \int_{\Omega}\langle\nabla _\alpha v, \nabla_{\alpha}\phi\rangle d(z, a_{i})^{-2\beta } dz & = \int_{\Omega} d(z, a_{i})^{-\beta } f(z, d(z, a_{i})^{-\beta } v )\phi dz\\ &\quad-\int_{\Omega} \frac{v\phi}{d(z, a_{i})^{2\beta}} \Big(\frac{\mu_{i}\psi_{i}^{2}}{d(z, a_{i})^{2}} -\frac{\mu \prod_{i = 1}^{k}\psi_{i}^2}{\prod_{i = 1}^{k}d(z, a_{i})^{2}}\Big)dz. \end{aligned} \end{equation} $ (2.10)

$ \phi $的表达式代入(2.10)式左边, 计算可得

$ \begin{equation} \begin{aligned} \int _{\Omega} \frac{\langle\nabla _\alpha v, \nabla_{\alpha}\phi\rangle}{d(z, a_{i})^{2\beta }} dz = &\int _{\Omega}\frac{2\eta v v_{L}^{2( s-1) } \langle \nabla _{\alpha}\eta , \nabla _{\alpha} v \rangle}{d(z, a_{i})^{2\beta}} dz\\ &+\int _{\Omega}\frac{\eta ^2v_{L}^{2( s-1) }| \nabla _{\alpha} v| ^2}{d(z, a_{i})^{2\beta}} dz +2( s-1) \int _{\Omega}\frac{\eta^2 v_{L}^{2( s-1) } | \nabla _{\alpha} v_{L}| ^2}{d(z, a_{i})^{2\beta}} dz. \end{aligned} \end{equation} $ (2.11)

由Young不等式, 对充分小的$ \varepsilon>0 $, 存在$ C_{1}(\varepsilon)>0 $使得

$ \begin{equation} \begin{aligned} \Big|\int _{\Omega} \frac{2\eta v v_{L}^{2( s-1) } \langle \nabla _{\alpha}\eta , \nabla _{\alpha} v \rangle}{d(z, a_{i})^{2\beta}} dz\Big| &\leq \varepsilon \int _{\Omega} \frac{\eta^{2} v_{L}^{2( s-1) } |\nabla_{\alpha}v|^{2}}{d(z, a_{i})^{2\beta}} dz+C_{1}(\varepsilon)\int _{\Omega} \frac{ v^{2} v_{L}^{2( s-1) } |\nabla_{\alpha}\eta|^{2}}{d(z, a_{i})^{2\beta}} dz \end{aligned} \end{equation} $ (2.12)

从而

$ \begin{equation} \begin{aligned} \int _{\Omega} \frac{\langle\nabla _\alpha v, \nabla_{\alpha}\phi\rangle}{d(z, a_{i})^{2\beta }} dz \geq& (1-\varepsilon)\int _{\Omega}\frac{\eta ^2v_{L}^{2( s-1) }| \nabla _{\alpha} v| ^2}{d(z, a_{i})^{2\beta}} dz +2( s-1) \int _{\Omega}\frac{\eta^2 v_{L}^{2( s-1) } | \nabla _{\alpha} v_{L}| ^2}{d(z, a_{i})^{2\beta}} dz\\ &-C_{1}(\varepsilon)\int _{\Omega} \frac{ v^{2} v_{L}^{2( s-1) } |\nabla_{\alpha}\eta|^{2}}{d(z, a_{i})^{2\beta}} dz. \end{aligned} \end{equation} $ (2.13)

$ \phi $的表达式代入(2.10)式右边第一项中, 利用函数$ f $满足的条件(1.3)可得

$ \begin{equation} \begin{aligned} \int _{\Omega }\frac{f(z, d(z, a_{i})^{-\beta } v) \phi}{d(z, a_{i})^{\beta }} dz & = \int _{\Omega }\frac{f(z, d(z, a_{i})^{-\beta } v) \eta^2vv_{L}^{2(s-1)}}{d(z, a_{i})^{\beta }} dz\\ &\leq \int _{\Omega }\frac{(C(|d(z, a_{i})^{-\beta } v|^{q-1}+|d(z, a_{i})^{-\beta } v|^{2^*-1})) \eta^2vv_{L}^{2(s-1)} }{d(z, a_{i})^{\beta }}dz\\ & = C\left(\int _{\Omega }\frac{|v|^{q}\eta^2 v_{L}^{2(s-1)}}{d(z, a_{i})^{q\beta }}dz+ \int_{\Omega}\frac{|v|^{2^*} \eta^2v_{L}^{2(s-1)}}{d(z, a_{i})^{2^*\beta } }dz\right). \end{aligned} \end{equation} $ (2.14)

对于上式第一项利用不等式$ t^{q}\leq t^{2}+t^{2^*} $ $ (q\in [2, 2^*)) $可得

$ \begin{equation} \frac{|v|^{q}}{d(z, a_{i})^{q\beta }}\leq \frac{v^{2}}{d(z, a_{i})^{2\beta }}+ \frac{|v|^{2^*}}{d(z, a_{i})^{2^*\beta }}. \end{equation} $ (2.15)

从而, 存在$ C_{1} $, $ C_{2}>0 $使得

$ \begin{equation} \begin{aligned} \int _{\Omega }\frac{f(z, d(z, a_{i})^{-\beta } v) \phi}{d(z, a_{i})^{\beta }} dz \leq C_{1}\int _{\Omega }\frac{v^{2}\eta^2 v_{L}^{2(s-1)}}{d(z, a_{i})^{2\beta }}dz+ C_{2}\int_{\Omega}\frac{|v|^{2^*} \eta^2v_{L}^{2(s-1)}}{d(z, a_{i})^{2^*\beta } }dz. \end{aligned} \end{equation} $ (2.16)

最后, 将$ \phi $的表达式代入(2.10)式右边第二项中, 利用$ \mu_{i} $的定义, 中值定理, Young不等式和$ \psi_{i}<1 $可得

$ \begin{equation} \begin{aligned} &\Bigg|\int_{\Omega} \frac{v\phi}{d(z, a_{i})^{2\beta}} \Big(\frac{\mu \prod_{i = 1}^{k}\psi_{i}^2}{\prod_{i = 1}^{k}d(z, a_{i})^{2}}-\frac{\mu_{i}\psi_{i}^{2}}{d(z, a_{i})^{2}} \Big)dz\Bigg| = \Bigg|\int_{\Omega} \frac{\psi_{i}^{2}v^{2}\eta^{2}v_{L}^{2(s-1)}}{d(z, a_{i})^{2(1+\beta)}} \Big( \frac{\mu \prod\limits_{j\neq i, \, j = 1}^{k}\psi_{j}^{2}}{\prod\limits_{j\neq i, \, j = 1}^{k}d(z, a_{j})^{2}}-\mu_{i}\Big)dz\Bigg|\\ \leq& \int_{B_{d}(a_{i}, \rho)} \frac{\psi_{i}^{2}v^{2}\eta^{2}v_{L}^{2(s-1)}}{d(z, a_{i})^{2(1+\beta)}} \Bigg|\frac{\mu }{\prod\limits_{j\neq i, \, j = 1}^{k}d(z, a_{j})^{2}}-\frac{\mu }{\prod\limits_{j\neq i, \, j = 1}^{k}d(a_{i}, a_{j})^{2}}\Bigg|dz\\ \leq& C_{3}\int_{B_{d}(a_{i}, \rho)} \frac{\psi_{i}^{2}v^{2}\eta^{2}v_{L}^{2(s-1)}}{d(z, a_{i})^{2(1+\beta)}}d(z, a_{i})dz = C_{3}\int_{B_{d}(a_{i}, \rho)} \frac{\psi_{i} v \eta v_{L}^{s-1}}{d(z, a_{i})^{1+\beta}} \frac{\psi_{i} v\eta v_{L}^{s-1}}{d(z, a_{i})^{\beta}}dz\\ \leq& \frac{\varepsilon C_{3}}{2}\int_{B_{d}(a_{i}, \rho)} \frac{\psi_{i}^{2}v^{2}\eta^{2}v_{L}^{2(s-1)}}{d(z, a_{i})^{2(1+\beta)}}dz +\frac{C_{3} C_{2}(\varepsilon)}{2}\int_{B_{d}(a_{i}, \rho)} \frac{\psi_{i}^{2}v^{2}\eta^{2}v_{L}^{2(s-1)}}{d(z, a_{i})^{2\beta}}dz, \end{aligned} \end{equation} $ (2.17)

其中$ C_{3} $, $ C_{2}(\varepsilon) $是正常数.

下面利用如下形式的加权Sobolev不等式[3]对(3.17)的右端项做进一步的处理:

$ \begin{equation} \left( \int _{\mathbb {R}^N} \psi^{\tau} \frac{|d(z)^{a} u| ^{2^*(\tau)}}{d(z)^{\tau}} dz \right) ^{\frac{2}{2^*(s)}}\, \leq C(\tau, a, Q)\int _{\mathbb{R}^N} | d(z)^a \nabla _\alpha u|^2 dz, \quad \forall u\in C_0^\infty (\mathbb {R}^N) \end{equation} $ (2.18)

其中$ 0\leq \tau\leq 2 $, $ a> \frac{2-Q}{2} $, $ C(\tau, a, Q)>0 $是常数.从而, 在(2.18)式中取$ \tau = 2 $, $ a = -\beta $, 存在正常数$ C_{4} $使得

$ \begin{equation} \begin{aligned} \int_{B_{d}(a_{i}, \rho)} \frac{\psi_{i}^{2}v^{2}\eta^{2}v_{L}^{2(s-1)}}{d(z, a_{i})^{2(1+\beta)}}dz &\leq C_{4}\int_{B_{d}(a_{i}, \rho)} \frac{|\nabla_{\alpha}(\eta vv_{L}^{s-1})|^{2}}{d(z, a_{i})^{2\beta}}dz\\ &\leq C_{4}\Big(2\int_{B_{d}(a_{i}, \rho)} \frac{v^{2}v_{L}^{2(s-1)}|\nabla_{\alpha}\eta|^{2}}{d(z, a_{i})^{2\beta}}dz+ 2\int_{B_{d}(a_{i}, \rho)} \frac{\eta^{2}v_{L}^{2(s-1)}|\nabla_{\alpha}v|^{2}}{d(z, a_{i})^{2\beta}}dz\\ &\quad+ 2(s-1)^{2}\int_{B_{d}(a_{i}, \rho)} \frac{\eta^{2}v^{2}v_{L}^{2(s-2)}|\nabla_{\alpha}v_{L}|^{2}}{d(z, a_{i})^{2\beta}}dz \Big). \end{aligned} \end{equation} $ (2.19)

因此, 结合(2.17), (2.19)式, (2.10)式右端第二项满足

$ \begin{equation} \begin{aligned} &\Bigg|\int_{\Omega} \frac{v\phi}{d(z, a_{i})^{2\beta}} \Big( \frac{\mu \prod_{i = 1}^{k}\psi_{i}^{2}}{\prod_{i = 1}^{k}d(z, a_{i})^{2}}-\frac{\mu_{i}\psi_{i}^{2}}{d(z, a_{i})^{2}}\Big)dz\Bigg|\\ \leq& (\varepsilon C_{5}+C_{3}(\varepsilon))\int_{B_{d}(a_{i}, \rho)} \frac{v^{2}v_{L}^{2(s-1)}(\eta^{2}+|\nabla_{\alpha}\eta|^{2})}{d(z, a_{i})^{2\beta}}dz\\ &+\varepsilon C_{5}\int_{B_{d}(a_{i}, \rho)} \frac{\eta^{2}v_{L}^{2(s-1)}|\nabla_{\alpha}v|^{2}}{d(z, a_{i})^{2\beta}}dz + \varepsilon(s-1)^{2} C_{5}\int_{B_{d}(a_{i}, \rho)} \frac{\eta^{2}v^{2}v_{L}^{2(s-2)}|\nabla_{\alpha}v_{L}|^{2}}{d(z, a_{i})^{2\beta}}dz. \end{aligned} \end{equation} $ (2.20)

其中$ C_{5} = C_{3}C_{4} $, $ C_{3}(\varepsilon) = \frac{1}{2}C_{3}C_{2}(\varepsilon) $.

将(2.13), (2.16), (2.20)式代入(2.10), 可得

$ \begin{equation} \begin{aligned} &(1-\varepsilon)\int _{\Omega}\frac{\eta ^2v_{L}^{2( s-1) }| \nabla _{\alpha} v| ^2}{d(z, a_{i})^{2\beta}} dz +2( s-1) \int _{\Omega}\frac{\eta^2 v_{L}^{2( s-1) } | \nabla _{\alpha} v_{L}| ^2}{d(z, a_{i})^{2\beta}} dz -C_{1}(\varepsilon)\int _{\Omega} \frac{ v^{2} v_{L}^{2( s-1) } |\nabla_{\alpha}\eta|^{2}}{d(z, a_{i})^{2\beta}} dz\\ \leq& C_{1}\int _{\Omega }\frac{v^{2}\eta^2 v_{L}^{2(s-1)}}{d(z, a_{i})^{2\beta }}dz+ C_{2}\int_{\Omega}\frac{|v|^{2^*} \eta^2v_{L}^{2(s-1)}}{d(z, a_{i})^{2^*\beta } }dz +(\varepsilon C_{5}+C_{3}(\varepsilon))\int_{B_{d}(a_{i}, \rho)} \frac{v^{2}v_{L}^{2(s-1)}(\eta^{2}+|\nabla_{\alpha}\eta|^{2})}{d(z, a_{j})^{2\beta}}dz\\ &+\varepsilon C_{5}\int_{B_{d}(a_{i}, \rho)} \frac{\eta^{2}v_{L}^{2(s-1)}|\nabla_{\alpha}v|^{2}}{d(z, a_{i})^{2\beta}}dz+ \varepsilon(s-1)^{2} C_{5}\int_{B_{d}(a_{i}, \rho)} \frac{\eta^{2}v^{2}v_{L}^{2(s-2)}|\nabla_{\alpha}v_{L}|^{2}}{d(z, a_{i})^{2\beta}}dz\\ \leq& C_{2}\int_{\Omega}\frac{|v|^{2^*} \eta^2v_{L}^{2(s-1)}}{d(z, a_{i})^{2^*\beta } }dz +C_{4}(\varepsilon)\int_{B_{d}(a_{i}, \rho)} \frac{v^{2}v_{L}^{2(s-1)}(\eta^{2}+|\nabla_{\alpha}\eta|^{2})}{d(z, a_{i})^{2\beta}}dz\\ &+\varepsilon C_{5}\int_{B_{d}(a_{i}, \rho)} \frac{\eta^{2}v_{L}^{2(s-1)}|\nabla_{\alpha}v|^{2}}{d(z, a_{i})^{2\beta}}dz + \varepsilon(s-1)^{2} C_{5}\int_{B_{d}(a_{i}, \rho)} \frac{\eta^{2}v_{L}^{2(s-1)}|\nabla_{\alpha}v_{L}|^{2}}{d(z, a_{i})^{2\beta}}dz. \end{aligned} \end{equation} $ (2.21)

$ \varepsilon = \min\{\frac{1}{1+2C_{5}}, \frac{1}{C_{5}(s-1)}\} $, 则存在常数$ C_{6} $, $ C_7>0 $$ C_5(\varepsilon)>0 $使得

$ \begin{equation} \begin{aligned} &C_{6}\int _{\Omega}\frac{\eta ^2v_{L}^{2( s-1) }| \nabla _{\alpha} v| ^2}{d(z, a_{i})^{2\beta}} dz +C_{7} \int _{\Omega}\frac{\eta^2 v_{L}^{2( s-1) } | \nabla _{\alpha} v_{L}| ^2}{d(z, a_{i})^{2\beta}} dz\\ \leq& C_{2}\int_{\Omega}\frac{|v|^{2^*} \eta^2v_{L}^{2(s-1)}}{d(z, a_{i})^{2^*\beta } }dz +C_{5}(\varepsilon)\int_{B_{d}(a_{i}, \rho)} \frac{v^{2}v_{L}^{2(s-1)}(\eta^{2}+|\nabla_{\alpha}\eta|^{2})}{d(z, a_{i})^{2\beta}}dz. \end{aligned} \end{equation} $ (2.22)

$ w = \eta v v_{L}^{s-1} $.将$ w $代入(2.18)式, 利用(2.22)式及$ s>1 $可得

$ \begin{equation} \begin{aligned} \left( \int _{\Omega }\frac{|\eta v v_{L}^{s-1}|^{2^*}}{d(z, a_{i})^{2^*\beta }}dz\right) ^{\frac{2}{2^*}} &\leq C_{8} \int _{\Omega }\frac{| \nabla _\alpha ( \eta v v_t^{s-1})| ^2}{d(z, a_{i})^{2\beta }}dz\\ & \leq 2C_{8}\Bigg( \int _{\Omega } \frac{| \nabla _\alpha \eta |^2 v^2 v_{L}^{2( s-1) }}{d(z, a_{i})^{2\beta }} +\int _{\Omega }\frac{\eta ^2v_{L}^{2( s-1) }| \nabla _\alpha v| ^2}{d(z, a_{i})^{2\beta }}\\ &\qquad +\int _{\Omega }\frac{( s-1) ^2\eta ^2 v_{L}^{2( s-1) } | \nabla _\alpha v_{L}| ^2}{d(z, a_{i})^{2\beta }}dz\Bigg) \\ &\leq sC_{9} \int _{\Omega }\frac{( \eta ^2+| \nabla _\alpha \eta | ^2)v^2v_{L}^{2(s-1)}} {d(z, a_{i})^{2\beta }}z + C_{10}s \int _{\Omega }\frac{\eta ^2| v| ^{2^*}v_{L}^{2(s-1)}}{d(z, a_{i})^{2^*\beta }}dz. \end{aligned} \end{equation} $ (2.23)

选取$ q\in (\frac{Q}{2}\, , \, \frac{Q(Q-2)}{2(Q-2-2\sqrt{(\frac{Q-2}{2})^{2}- \sum\limits^{k}_{i = 1}\mu_{i} })} ) $, 使其满足$ (2^*-2)q<\frac{2Q}{Q-2-2\sqrt{(\frac{Q-2}{2})^{2}- \sum\limits^{k}_{i = 1}\mu_{i}}}, 2<\frac{2q}{q-1}<2^*. $类似文[8]的计算方法, 对任意的$ \varepsilon >0 $, 存在常数$ C_{11}>0 $使得

$ \begin{equation} \int _{\Omega }\frac{\eta ^2| v| ^{2^*}v_{L}^{2(s-1)}}{d(z, a_{i})^{2^*\beta }}dz \leq C_{11}\varepsilon^2 \left( \int _{\Omega }\Big|\frac{ \eta v v_{L}^{s-1}}{d(z, a_{i})^{\beta }}\Big|^{2^*}dz \right) ^{\frac{2}{2^*}}+ C_{11}\varepsilon^{-\frac{2Q}{2q-Q}}\int _{\Omega }\Big|\frac{\eta v v_{L}^{s-1}}{d(z, a_{i})^{\beta }}\Big|^2 dz. \end{equation} $ (2.24)

将(2.24)式代入(2.23)式中并取$ \varepsilon = \frac{1}{\sqrt{2C_{10}C_{11}s}} $, 则有

$ \begin{equation} \left( \int _{\Omega }\frac{| \eta v v_{L}^{s-1}|^{2^*}}{d(z, a_{i})^{2^*\beta }}dz \right) ^{\frac{2}{2^*}} \leq C_{12}s^{\frac{2q}{2q-Q}}\int _{\Omega } \frac{( \eta^2+| \nabla _\alpha \eta | ^2)| v|^2v_{L}^{2(s-1)}}{d(z, a_{i})^{2\beta }}dz, \end{equation} $ (2.25)

其中$ C_{12} = C_{9}+(C_{10}C_{11})^{\frac{2q}{2q-Q}}>0 $.在(2.25)式中应用$ v_{L} $$ \eta $的性质可得

$ \begin{equation} \begin{aligned} \left( \int _{B_{d}(a_{i}, r)} \frac{|v|^{2}v_{L}^{2^*s-2}}{d(z, a_{i})^{2^*\beta }}dz\right)^{\frac{2}{2^*}} &\leq \left( \int _{\Omega }\frac{\eta ^{2^*}| v|^{2}v_{L}^{2^*s-2}}{d(z, a_{i})^{2^*\beta }}\, dz\right) ^{\frac{2}{2^*}}\\ &\leq C_{12}s^{\frac{2q}{2q-Q}}\int _{\Omega } \frac{( \eta^2+| \nabla _\alpha \eta |^2)| v|^2v_{L}^{2(s-1)}}{d(z, a_{i})^{2\beta }}dz\\ &\leq \frac{C_{12}r^{2^*-2}s^{\frac{2q}{2q-Q}}}{( \rho -r) ^2} \int _{B_{d }(a_{i}, \rho)}\frac{( \eta^2+| \nabla _\alpha \eta| ^2)|v| ^2v_{L}^{2(s-1)}}{d(z, a_{i})^{2^*\beta }}dz\\ &\leq C_{13}s^{\frac{2q}{2q-Q}} \int _{B_{d }(a_{i}, \rho)} \frac{|v|^{2}v_{L}^{2s-2}}{d(z, a_{i})^{2^*\beta }}dz. \end{aligned} \end{equation} $ (2.26)

$ s_{0} \in\Big(\frac{Q}{Q-2}, \frac{Q}{Q-2-2\sqrt{(\frac{Q-2}{2})^{2}-\sum\limits_{i = 1}^{k}\mu_{i}}}\Big) $.则计算可得$ \frac{2Q}{Q-2}<2s_{0}< \frac{2Q}{Q-2-2\sqrt{(\frac{Q-2}{2})^{2}-\sum\limits_{i = 1}^{k}\mu_{i}}} $.从而, 由引理2.2知, 对任意的$ u\in D^{1, 2}_{\alpha}(\Omega) $$ \int_{\Omega}|u|^{2s_{0}}dz<+\infty $.

取序列$ s_j = s_{0}( \frac{2^*}{2})^j>1 $, $ \forall j = 0, 1, 2, \cdots $, 将$ s_{j} $代入(2.26)式, 利用Moser迭代技巧得

$ \begin{equation} \begin{aligned} &( \int _{B_{d}(a_{i}, r)} \frac{|v|^{2}v_{L}^{2s_{j+1}-2}}{d(z, a_{i})^{2^*\beta }}dz ) ^{\frac{1}{2s_{j+1}}}\\ \leq& C_{13}^{\sum\limits_{k = 0}^j \frac{1}{2s_k}} (s_{0})^{\frac{q}{s_{0}(2q-Q)}\sum\limits_{k = 0}^{j} (\frac{2}{2^*})^{j}} (\frac{2^*}{2})^{\frac{q}{s_{0}(2q-Q)}\sum\limits_{k = 0}^{j} j(\frac{2}{2^*})^{j}} \times( \int _{B_{d}(a_{i}, \rho)} \frac{|v|^{2}v_{L}^{2s_{0}-2}}{d(z, a_{i})^{2^*\beta }}dz )^{\frac{1}{2s_{0}}}. \end{aligned} \end{equation} $ (2.27)

因为级数$ \sum\limits_{k = 0}^{\infty} \frac{1}{2s_k} $, $ \sum\limits_{k = 0}^{\infty} (\frac{2}{2^*})^{j} $, $ \sum\limits_{k = 0}^{\infty} j(\frac{2}{2^*})^{j} $是收敛的, 所以, 对(2.27)式取极限$ j\to\infty $, 可知:存在不依赖于$ L $的常数$ C>0 $使得$ \| v\| _{L^{\infty }(B_{\rho _0})}\leq C $.因此, 由$ v $的定义可得不等式(1.12)成立, 进而可得(1.13)式亦成立.定理1.1得证.

参考文献
[1] Loiudice A. Asymptotic estimates and nonexistence results foe critical problems with Hardy term involving Grushin-type operators[J]. Annalli di Mate. Pure ed Applicate, 2019, 198(6): 1909–1930. DOI:10.1007/s10231-019-00847-8
[2] Bonfiglioli A, Lanconelli E, Uguzzoni F. Stratified Lie groups and potential theory for their SubLaplacians[M]. New York: Springer, 2007.
[3] Dou J, Niu P. Hardy-Sobolev type inequalities for generalized Baouendi-Grushin operators[J]. Miskolc Math Notes, 2007, 8(1): 73–77. DOI:10.18514/MMN.2007.142
[4] Monti R, Morbidelli D. Kelvin transform for Grushin operators and critical semilinear equations[J]. Duke Math J, 2006, 131(1): 167–202. DOI:10.1215/S0012-7094-05-13115-5
[5] Mont R. Sobolev inequalities for weighted gradients[J]. Commun Partial Differ Equ, 2006, 31(10): 1479–1504. DOI:10.1080/03605300500361594
[6] Loiudice A. Local behavior of solutions to sub-elliptic problems with Hardy potential on Carnot groups[J]. Mediterr J Math, 2018, 15(3): 81. DOI:10.1007/s0009-018-1126-8
[7] Kang D. On the elliptic problems involving multi-singular inverse square potentials and critical Sobolev exponent[J]. Nonlinear Analysis, 2008, 68(10): 3050–3066. DOI:10.1016/j.na.2007.01.073
[8] Han P. Asymptotic behavior of solutions to semilinear elliptic equations with Hardy potential[J]. Proc. Amer. Math. Soc., 2007, 135(2): 365–372.