|
摘要: |
本文研究了多孔介质方程在一般几何流下的梯度估计.通过Aroson和Bénilan对多孔介质方程的研究结果以及运用Li-Yau梯度估计的方法,获得了对多孔介质方程的正解对于Laplace算子以及drifing Laplace算子在一般几何流演化下的一些梯度估计,推广了Zhu Xiao-bao和Deng Yi-hua的结果. |
关键词: 梯度估计 几何流 多孔介质方程 哈拿克不等式 |
DOI: |
分类号:O186.1 |
基金项目: |
|
GRADIENT ESTIMATE FOR POSITIVE SOLUTIONS OF THE PME UNDER GEOMETRIC FLOW |
ZHAO He-lei
|
Abstract: |
In this paper, we derive a local gradient estimate of the Aronson-Bénilan type with Laplace operator and drifting Laplace operator for positive solutions of porous medium equations posed on Riemainnian manifolds with bounded symmetric tensor by using Li-Yau method. These results extend Zhu Xiao-bao's and Deng Yi-hua's results. |
Key words: gradient estimate geometric flow porous medium equations Harnack inequality |