|
摘要: |
本文研究了δ Jordan-李三系上带有权λ的k-阶广义导子的相关问题.通过计算,得到了每一个δ Jordan-李三系上带有权λ的k-阶Jordan三角θ-导子都是一个带有权λ的k-阶θ-导子.在定义下,给出了带有权λ的k-阶Jordan三角θ-导子的另一种等价形式.同时,建立了带有权λ的k-阶广义(θ,φ)-导子和Rota-Baxter δ Jordan-李三系上带有权λ的Rota-Baxter算子的遗传性质,得到了每一个Rota-Baxter δ Jordan-李代数能看成一个Rota-Baxter δ Jordan-李三系的结论. |
关键词: δ Jordan-李三系 k-阶(θ,φ)-导子 k-阶Jordan三角(θ,φ)-导子 权λ 权λ的Rota-Baxter δ Jordan-李三系 |
DOI: |
分类号:O152.5 |
基金项目:Supported by NSFC(11471090), and NSFJL(20130101068JC). |
|
K-ORDER GENERALIZED DERIVATIONS OF WEIGHT λ ON δ JORDAN-LIE TRIPLE SYSTEMS |
LIU Ning,ZHANG Qing-cheng
|
Abstract: |
This paper deals with the k-order generalized derivations of weight λ on δ JordanLie triple systems. By computing, we conclude that every k-order Jordan triple θ-derivation of weight λ on δ Jordan-Lie triple systems is a k-order θ-derivation of weight λ. Under the definitions, we give another equivalent form of k-order Jordan triple θ-derivation of weight λ. Meanwhile, We also establish the inheritance property of k-order generalized (θ,φ)-derivation of weight λ and Rota-Baxter operator of weight λ on Rota-Baxter δ Jordan-Lie triple systems. We obtain that every Rota-Baxter δ Jordan-Lie algebra can be seen as a Rota-Baxter δ Jordan-Lie triple system. |
Key words: δ Jordan-Lie triple systems k-order (θ, φ)-derivations k-order Jordan triple (θ, φ)-derivations weight λ Rota-Baxter δ Jordan-Lie triple systems of weight λ |