|
摘要: |
本文研究了黎曼流形上的微分Harnack估计问题.利用最大值原理和加权的p-Bochner公式的方法,在CD(0,N)条件下,获得了加权黎曼流形上加权非线性反应扩散方程的Li-Yau型和Hamilton型微分Harnack估计,推广了作者在不加权时非负Ricci曲率条件下成立的结果. |
关键词: 加权反应扩散方程 Li–Yau估计 Hamilton估计 曲率维数条件 Bochner公式 |
DOI: |
分类号:O175.29 |
基金项目:Supported by National Natural Science Foundation of China (11701347); Natural Science Foundation of Shanxi Province (201901D211185). |
|
DIFFERENCE HARNACK ESTIMATES FOR WEIGHTED NONLINEAR REACTION-DIFFUSION EQUATIONS ON WEIGHTED RIEMANNIAN MANIFOLDS |
WANG Yu-zhao,WANG Xue-ming
|
Abstract: |
In this paper, we study the problem of difference Harnack estimate on Riemannian manifolds. By using maximum principle and weighted p-Bochner formula, we derive the Li-Yau type difference Harnack estimate and Hamilton type estimate for the positive solutions to weighted nonlinear reaction-diffusion equation on compact weighted Riemannian manifold with curvature dimension condition CD(0, N), which generalizes the non-weighted case under the condition of nonnegative Ricci curvature. |
Key words: weighted nonlinear reaction diffusion equation Li-yau type difference Harnack estimate hamilton type difference Harnack estimate curvature dimension condition weighted p-Bochner formula |