| 摘要: | 
			 
		     | 本文研究了黎曼流形上的微分Harnack估计问题.利用最大值原理和加权的p-Bochner公式的方法,在CD(0,N)条件下,获得了加权黎曼流形上加权非线性反应扩散方程的Li-Yau型和Hamilton型微分Harnack估计,推广了作者在不加权时非负Ricci曲率条件下成立的结果. | 
			
	         
				| 关键词:  加权反应扩散方程  Li–Yau估计  Hamilton估计  曲率维数条件  Bochner公式 | 
			 
                | DOI: | 
            
                | 分类号:O175.29 | 
			 
             
                | 基金项目:Supported by National Natural Science Foundation of China (11701347); Natural Science Foundation of Shanxi Province (201901D211185). | 
          |  | 
           
                | DIFFERENCE HARNACK ESTIMATES FOR WEIGHTED NONLINEAR REACTION-DIFFUSION EQUATIONS ON WEIGHTED RIEMANNIAN MANIFOLDS | 
           
			
                | WANG Yu-zhao, WANG Xue-ming | 
           
		   
		   
                | School of Mathematical Sciences, Shanxi University, Taiyuan 030006 China | 
		   
             
                | Abstract: | 
			
                | In this paper, we study the problem of difference Harnack estimate on Riemannian manifolds. By using maximum principle and weighted p-Bochner formula, we derive the Li-Yau type difference Harnack estimate and Hamilton type estimate for the positive solutions to weighted nonlinear reaction-diffusion equation on compact weighted Riemannian manifold with curvature dimension condition CD(0, N), which generalizes the non-weighted case under the condition of nonnegative Ricci curvature. | 
	       
                | Key words:  weighted nonlinear reaction diffusion equation  Li-yau type difference Harnack estimate  hamilton type difference Harnack estimate  curvature dimension condition  weighted p-Bochner formula |