数学杂志  2020, Vol. 40 Issue (6): 653-661   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
WANG Yu-zhao
WANG Xue-ming
DIFFERENCE HARNACK ESTIMATES FOR WEIGHTED NONLINEAR REACTION-DIFFUSION EQUATIONS ON WEIGHTED RIEMANNIAN MANIFOLDS
WANG Yu-zhao, WANG Xue-ming    
School of Mathematical Sciences, Shanxi University, Taiyuan 030006 China
Abstract: In this paper, we study the problem of difference Harnack estimate on Riemannian manifolds. By using maximum principle and weighted p-Bochner formula, we derive the Li-Yau type difference Harnack estimate and Hamilton type estimate for the positive solutions to weighted nonlinear reaction-diffusion equation on compact weighted Riemannian manifold with curvature dimension condition CD(0, N), which generalizes the non-weighted case under the condition of nonnegative Ricci curvature.
Keywords: weighted nonlinear reaction diffusion equation     Li-yau type difference Harnack estimate     hamilton type difference Harnack estimate     curvature dimension condition     weighted p-Bochner formula    
加权黎曼流形上加权非线性反应扩散方程的微分Harnack估计
王宇钊, 王雪明    
山西大学数学科学学院, 山西 太原 030006
摘要:本文研究了黎曼流形上的微分Harnack估计问题.利用最大值原理和加权的p-Bochner公式的方法,在CD(0,N)条件下,获得了加权黎曼流形上加权非线性反应扩散方程的Li-Yau型和Hamilton型微分Harnack估计,推广了作者在不加权时非负Ricci曲率条件下成立的结果.
关键词加权反应扩散方程    Li–Yau估计    Hamilton估计    曲率维数条件    Bochner公式    
1 Introduction

Let $ M $ be an $ n $-dimensional compact Riemannian manifold with curvature dimension condition $ CD(0, N) $. In this paper, we consider a weighted nonlinear reaction-diffusion equation(WNRDE)

$ \begin{equation} u_t = \Delta_{p, f}u^{\gamma}+cu^{q}, \end{equation} $ (1.1)

on $ M $, where $ \gamma>0 $, $ p>1 $, $ q>0 $, $ \Delta_{p, f}u = e^f{\rm div}(e^{-f}|\nabla u|^{p-2}\nabla u) $ is the weighted $ p $-Laplacian of $ u $, and $ f $ is a smooth function.

Gradient estimate or differential Harnack estimate is an important tool in geometric analysis. In 1986, Li and Yau [1] first proved the sharp gradient estimate for positive solutions to heat equation on Riemannian manifolds. Since then, gradient estimate has been studied extensively by many scholars. Particularly in the last decade, more attention has been paid to the study of nonlinear equations. Kotschwar and Ni [2] established gradient estimates for $ p $-harmonic functions and parabolic $ p $-Lapalacian equation on Riemannian manifolds. In [3, 4], the first author and coauthor improved Li-Yau type gradient estimates for the positive solutions to the weighted nonlinear $ p $-heat equation on Riemannian manifolds with $ CD(-K, m) $ condition. In [5], the authors proved the Li-Yau type estimate for the porous medium equation and fast diffusion equation. In [6], the first author and coauthor got sharp global Li-Yau type gradient estimates for positive solutions to doubly nonlinear diffusion equation on compact Riemannian manifolds with nonnegative Ricci curvature.

In [7], we derived the global Li-Yau type and Hamilton type gradient estimate for positive solutions to the nonlinear reaction-diffusion equation. The purpose of this paper is to extend the work in [7], that is to prove the gradient estimates for weighted nonlinear reaction-diffusion equation (1.1) on Riemannian manifolds.

To show our results, we recall some necessary notations. Let $ (M, g, d\mu)(d\mu = e^{-f}dV) $ be an $ n $-dimensional compact weighted Riemannian manifold, $ dV $ be the Riemannian volume measure, $ f\in C^{\infty}(M) $. Define a diffusion operator $ L\doteqdot\Delta_f = \Delta-\nabla f\cdot\nabla $, and $ N $-Bakry-Émery Ricci curvature tensor

$ Ric^N_f(L)\doteqdot {\rm Ric}+\nabla\nabla f-\frac{\nabla f\otimes\nabla f}{N-n}. $

If $ N = \infty $, then Bakry-Émery Ricci curvature $ {\rm Ric}^\infty_f(L)\doteqdot {\rm Ric}_f = {\rm Ric}+\nabla\nabla f $, which firstly studied by Bakry and Émery [8]. If $ L $ satisfies the curvature dimension condition $ CD(K, N) $ if

$ \varGamma_2(u, u)\ge\frac{1}{N}(Lu)^2+K|\nabla u|^2, $

where $ \varGamma_2(u, u) = \frac{1}{2}L|\nabla u|^2-\langle\nabla Lu, \nabla u\rangle $. Furthermore, by the weighted Bochner formula, we know that curvature dimension condition $ CD(K, N) $ is equivalent to $ {\rm Ric}^N_f\ge Kg $ [9].

Now we give the global Li-Yau type difference Harnack estimate for WNRDE (1.1) and its applications in Harnack inequalities.

Theorem 1.1    Let $ M $ be an $ n $-dimensional compact weighted Riemannian manifold with the $ CD(0, N) $ condition. Assume that $ u $ is a smooth nonnegetive solution to (1.1), and $ v = \frac{\gamma}{b}u^b $ satisfy equation (2.1) on $ M $. Then for any $ b>0 $, $ \bar{a}>0 $ and $ c(q-1)(q-1+b)\ge0 $, we have

$ \begin{equation} \frac{|\nabla v|^p}{v}-\frac{v_t}{v}+\kappa v^m\le\frac {\bar{a}}{t}+(p-1)(m+1)\kappa \bar{a}v_{min}^{m}, \end{equation} $ (1.2)

where $ b = \gamma-\frac{1}{p-1} $, $ \bar{a} = \frac{Nb}{p+(p-1)Nb} $, $ m = \frac{q-1}{b} $, $ \kappa = cb^{m+1}\gamma^{-m} $ and $ v_{min}\doteqdot\min_M v $.

Remark 1.2 When $ c = 0 $ and $ f = const. $, the estimate (1.2) reduces the Li-Yau type estimate of weighted doubly nonlinear diffusion equation in [6].

On the other hand, Hamilton [10] improved the elliptic type gradient estimate on a compact manifold. Yan and Wang [11] established elliptic type gradient estimates for positive solutions to the doubly nonlinear diffusion equation on Riemannian manifolds. Recently, the authors [7] derived Hamilton type gradient estimates for nonlinear reaction-diffusion equation on compact Riemanian manifold with nonnegative Ricci curvature. In this paper, we can prove Hamilton type estimate for WNRDE (1.1) on $ n $-dimensional compact weighted Riemannian manifold with $ CD(0, N) $ condition.

Theorem 1.3   Let $ M $ be an $ n $-dimensional compact weighted Riemannian manifold with the $ CD(0, N) $ condition. Suppose that $ u $ is a smooth positive solution to (1.1) and $ v $ satisfy equation (2.1) on $ M $. Then for any $ p>1 $, $ -\frac p{(p-1)N}<b<0 $ and $ \kappa(p(m+1)-1)>0 $,

$ \begin{equation} F \frac{|\nabla v|^p}{-v}\le\frac{p}{(p-1)(Nb(p-1)+p)}\left(\frac1t+\kappa(p(m+1)-1)v_{Max}\right), \end{equation} $ (1.3)

where $ v_{Max}\doteqdot\max_M v^m $.

As applications of two estimates in Theorem 1.1 and 1.3, by integrating along minimizing geodesic paths, we can derive the corresponding Harnack inequalities.

Corollary 1.4    Let $ M $ be an $ n $-dimensional compact weighted Riemannian manifold with the $ CD(0, N) $ condition, $ u $ be a positive solution to (1.1) and $ v $ satisfy the equation (2.1). Given any $ x_1, x_2\in M $, $ 0\le t_1<t_2<T $ and $ c>0 $, we have:

$ 1 $. $ q>1 $, $ v_{max}\doteqdot\max_M v<\infty $, then

$ \begin{align} &v(x_2, t_2)-v(x_1, t_1)\\ \ge&-{\bar{a}}v_{max}{\log}\left(\frac{t_2}{t_1}\right)-\kappa v_{min}^{m}((p-1)(m+1)\bar{a}v_{max} -v_{min})(t_2-t_1)-\frac{{d(x_1, x_2)}^{p^*}}{p^*(p(t_2-t_1))^{{1}/(p-1)}}, \end{align} $ (1.4)

where $ p^* = \frac{p}{p-1} $, $ d(x_1, x_2) $ denotes the geodestic distance between $ x_1 $ and $ x_2 $.

$ 2 $. $ q<1-b $, $ v_{min}\doteqdot\min_M v<\infty $, then

$ \begin{align} &v(x_2, t_2)-v(x_1, t_1)\\ \ge&-{\bar{a}}v_{max}{\log}\left(\frac{t_2}{t_1}\right)-\kappa v_{min}^{m+1}((p-1)(m+1)\bar{a} -1)(t_2-t_1)-\frac{{d(x_1, x_2)}^{p^*}}{p^*(p(t_2-t_1))^{{1}/(p-1)}}. \end{align} $ (1.5)

Corollary 1.5   Let $ M $ be an $ n $-dimensional compact weighted Riemannian manifold with the $ CD(0, N) $ condition, $ u $ be a positive solution to () and $ v $ satisfy the equation (1.1). Given any $ x_1, x_2\in M $, we have:

$ \begin{align} {\rm log}\frac{v(x_1, t)}{v(x_2, t)} \le \frac{1}{(p-1)(Nb(p-1)+p)}\left(\frac1t+\kappa(p(m+1)-1)v_{max}^m\right)-\frac{d^{p^*}(x_1, x_2)}{p^{*}v_{max}}, \end{align} $ (1.6)

where $ p^* = \frac{p}{p-1} $, $ v_{max} = \max_M v $, $ v_{Max} = \max_M v^m $ and $ d(x_1, x_2) $ denotes the geodestic distance between $ x_1 $ and $ x_2 $.

The organization of this paper is as follows. In Section 2, using the weighted $ p $-Bochner formula, we will give the proof of Li-Yau type difference Harnack estimate (1.2). In section 3, we will prove Hamilton type estimate (1.3). In Section 4, two Harnack inequalities are derived as applications of two type estimates.

2 Global Li-Yau Type Difference Harnack Estimate

In this paper, let $ \nabla $ and $ {\rm div} $ be the gradient operator and divergence operator on $ M $. Assume that $ u $ is a positive solution to (1.1), the pressure transform introduced by the first author in [6],

$ \begin{equation*} v = \frac{\gamma}{b}u^b, \;b = \gamma-\frac{1}{p-1}. \end{equation*} $

The WNRDE can be rewritten as

$ u_t = e^{f}{\rm div}(e^{-f}u|\nabla v|^{p-2}\nabla v)+cu^{q}, $

and corresponding pressure equation for $ v $ satisfies

$ \begin{equation} v_t = bv\Delta_{p, f}v+|\nabla v|^p+\kappa v^{m+1}, \end{equation} $ (2.1)

where $ m = \frac{q-1}{b} $ and $ \kappa = cb^{m+1}\gamma^{-m} $. The linearized operator of weighted $ p $-Laplacian is defined by

$ \begin{equation} \mathcal{L}_f(\psi)\doteqdot e^{f}{\rm div}\Bigr(e^{-f}w^{{\frac{p}{2}}-1}A(\nabla\psi)\Bigr), \end{equation} $ (2.2)

and its parabolic operator is $ \Box_f \doteqdot\frac{\partial}{\partial t}-bv\mathcal{L}_f, $ where $ w = |\nabla v|^2>0 $, and $ A = {\rm id}+(p-2)\frac{\nabla v\otimes\nabla v}{w}. $

Lemma 2.6    Let

$ \begin{equation*} F\doteqdot\frac{v_t}{v}-\frac{|\nabla v|^p}{v}-\kappa v^m = b\Delta_{p, f}v. \end{equation*} $

Then

$ \begin{align} \Box_f v = &w^\frac{p}{2}-(p-2)vF+\kappa v^{m+1}, \end{align} $ (2.3)
$ \begin{align} \Box_f v^m = &mv^{m-1}v_t-(p-1)mv^mF-(p-1)(m-1)mbv^{m-1}w^{\frac{p}{2}}, \end{align} $ (2.4)
$ \begin{align} \Box_f v_t = &Fv_t+pw^{\frac{p}{2}-1}\langle\nabla v, \nabla v_t\rangle+(m+1)\kappa v^mv_t. \end{align} $ (2.5)
$ \begin{align} \Box_f w = &pw^{\frac{p}{2}-1}\langle\nabla v, \nabla w\rangle-\Bigr(\frac{p}{2}-1\Bigr)bvw^{\frac{p}{2}-2}|\nabla w|^2-2bvw^{\frac{p}{2}-1}\Bigr(|\nabla\nabla v|^2+{\rm Ric}_f(\nabla v, \nabla v)\Bigr) \\ &+2\big(F+(m+1)\kappa v^m\big)w, \end{align} $ (2.6)
$ \begin{align} \Box_f w^{\frac{p}{2}} = &pw^{\frac{p}{2}-1}\langle\nabla v, \nabla w^{\frac{p}{2}}\rangle-pbvw^{p-2}\Bigl({|\nabla\nabla v|_{A}^{2}}+\\ {\rm Ric}_f(\nabla v, \nabla v)\Bigr)+pw^{\frac{p}{2}}\big(F+(m+1)\kappa v^m\big), \end{align} $ (2.7)

where $ |\nabla\nabla v|_{A}^{2} = |\nabla\nabla v|^2+\frac{p-2}{2}\frac{|\nabla w|^2}{w}+\frac{(p-2)^2}{4}\frac{|\nabla v\cdot\nabla w|^2}{w^2}. $

Proof For a constant $ \beta $, combining the equation (2.1) and the definition of $ \mathcal L $ in (2.2), we have

$ \begin{align} \Box_f v^{\beta}& = \beta v^{\beta-1}v_t-bve^{f}{\rm div}\Bigr(e^{-f}w^{\frac{p}{2}-1}A\nabla(v^{\beta})\Bigr)\\ & = \beta v^{\beta-1}v_t-\beta bv^{\beta}e^{f}{\rm div}(e^{-f}w^{\frac{p}{2}-1}A\nabla v)-(p-1)(\beta-1)\beta bv^{\beta-1}w^{\frac{p}{2}}\\ & = (2-p)b\beta v^{\beta}\Delta_{p, f}v+\beta [1-(p-1)(\beta-1)b]v^{\beta-1}w^{\frac p2}+\beta\kappa v^{\beta+m}. \end{align} $ (2.8)

Set $ \beta = 1 $ and $ \beta = m $ in the equation (2.8), then we get (2.3) and (2.4). We can directly deduce

$ \begin{align} \frac{\partial}{\partial t}(\Delta_{p, f}v)& = e^{f}{\rm div}\left(e^{-f}w^{\frac{p}{2}-1}\Bigr(\nabla v_t+(p-2)\frac{\langle\nabla v, \nabla v_t\rangle}{w}\nabla v\Bigr)\right) = \mathcal{L}_f(v_t). \end{align} $

Then

$ \begin{align} \Box_f v_t& = \partial_t{v_t}-bv\mathcal{L}_f(v_t)\\ & = bv_t\Delta_{p, f}v+bv\partial_t(\Delta_{p, f}v)+pw^{\frac{p}{2}-1}\langle\nabla v, \nabla v_t\rangle+(m+1)\kappa v^mv_t-bv\mathcal{L}_f(v_t)\\ & = bv_t\Delta_{p, f}v+pw^{\frac{p}{2}-1}\langle\nabla v, \nabla v_t\rangle+(m+1)\kappa v^mv_t. \end{align} $

According to the weighted nonlinear Bochner formula(See [3]),

$ \mathcal{L}_f(w) = 2w^{\frac{p}{2}-1}\Bigr(|\nabla\nabla v|^2+{\rm Ric}_f(\nabla v, \nabla v)\Bigr)+2\langle\nabla v, \nabla\Delta_{p, f}v\rangle +\Bigr(\frac{p}{2}-1\Bigr)w^{\frac{p}{2}-2}|\nabla w|^2, $

we obtain

$ \begin{align} \Box_f w = &\partial_t{w}-bv\mathcal{L}_f(w)\\ = & 2\langle\nabla v, \nabla v_t\rangle-2bvw^{\frac{p}{2}-1}\Bigr(|\nabla\nabla v|^2+{\rm Ric}_f(\nabla v, \nabla v)+w^{1-\frac{p}{2}}\langle\nabla v, \nabla\Delta_{p, f}v\rangle\Bigr) \\ & -\Bigr(\frac{p}{2}-1\Bigr)bvw^{\frac{p}{2}-2}|\nabla w|^2 \\ = & pw^{\frac{p}{2}-1}\langle\nabla v, \nabla w\rangle-\Bigr(\frac{p}{2}-1\Bigr)bvw^{\frac{p}{2}-2}|\nabla w|^2-2bvw^{\frac{p}{2}-1}\Bigr(|\nabla\nabla v|^2+{\rm Ric}_f(\nabla v, \nabla v)\Bigr) \\ &+2(b\Delta_{p, f}v+(m+1)\kappa v^m)w, \end{align} $

and

$ \begin{align} \Box_f w^{\frac{p}{2}} & = \partial_t{w^{\frac{p}{2}}}-bv\mathcal{L}_f(w^{\frac{p}{2}})\\ & = \frac{p}{2}w^{\frac{p}{2}-1}\Box_f w-\frac{p}{2}\Bigr(\frac{p}{2}-1\Bigr)bvw^{p-3}\langle\nabla w, (A\nabla w)\rangle\\ & = pw^{\frac{p}{2}-1}\langle\nabla v, \nabla w^{\frac{p}{2}}\rangle-pbvw^{p-2}\Bigr({|\nabla\nabla v|_{A}^{2}}+{\rm Ric}_f(\nabla v, \nabla v)\Bigr)+pw^{\frac{p}{2}}\big(b\Delta_{p, f}v+(m+1)\kappa v^m), \end{align} $

where $ |\nabla\nabla v|_{A}^{2} = |\nabla\nabla v|^2+\frac{p-2}{2}\frac{|\nabla w|^2}{w}+\frac{(p-2)^2}{4}\frac{|\nabla v\cdot\nabla w|^2}{w^2} $ and $ F = b\Delta_{p, f}v $.

Proposition 2.7 Let $ u $ and $ v $ be as same in Lemma 2.6, we have

$ \begin{align} \Box_f F = &\lambda w^{\frac{p}{2}-1}\big\langle\nabla F, \nabla v\big\rangle+pbw^{p-2}\Bigl({|\nabla\nabla v|_{A}^{2}}+{\rm Ric}_f(\nabla v, \nabla v)\Bigl)+(p-1)F^2\\ &+(p-1)F\kappa v^m+2bm(p-1)\kappa v^{m-1}w^{\frac{p}{2}}+\kappa bv\mathcal{L}_f(v^m), \end{align} $ (2.9)

where $ \lambda = 2\gamma(p-1)+(p-2) $.

Proof For any smooth functions $ h, g $, calculations are based on the following formula on parabolic operator $ \Box_f $,

$ \begin{equation} \Box_f\left(\frac{h}{g}\right) = \frac{\Box_f h}{g}-\frac{h\Box_f g}{g^2}+2bvw^{\frac{p}{2}-1}\Bigr\langle A\Bigl(\nabla\Bigl(\frac{h}{g}\Bigl)\Bigl), \nabla {\rm log}\, g\Bigr\rangle. \end{equation} $ (2.10)

Then we have

$ \begin{align*} \Box_f\Bigl(\frac{v_t}{v}\Bigl) = &\frac{\Box_f v_t}{v}-\frac{v_t\Box_f v}{v^2}+2bvw^{\frac{p}{2}-1}\Bigr\langle A\Bigl(\nabla\Bigl(\frac{v_t}{v}\Bigl)\Bigl), \nabla {\rm log}v\Bigr\rangle\\ = & \frac{1}{v}\Bigl(pw^{\frac{p}{2}-1}\langle\nabla v, \nabla v_t\rangle+(p-1)v_tF\Bigl) -\frac{v_t}{v}\frac{w^{\frac{p}{2}}}{v}+2bw^{\frac{p}{2}-1}\Bigr\langle A\Bigl(\nabla\Bigl(\frac{v_t}{v}\Bigl)\Bigl), \nabla v\Bigr\rangle +\kappa mv^{m-1}v_t\notag , \end{align*} $ (2.11)

and

$ \begin{align} \Box_f\Bigl(\frac{w^{\frac p2}}{v}\Bigl) = &\frac{\Box_f w^{\frac p2}}{v}-\frac{w^{\frac p2}\Box_f v}{v^2}+2bvw^{\frac{p}{2}-1}\Bigr\langle A\Bigl(\nabla\Bigl(\frac{w^{\frac{p}{2}}}{v}\Bigl)\Bigl), \nabla {\rm log}v\Bigr\rangle\\ = & \frac{1}{v}\left(pw^{\frac{p}{2}-1}\langle\nabla v, \nabla w^{\frac p2}\rangle+2(p-1)w^{\frac{p}{2}}F\right)-\frac{w^{p}}{v^2}+2bw^{\frac{p}{2}-1}\Bigr\langle A\Bigl(\nabla\Bigl(\frac{w^{\frac{p}{2}}}{v}\Bigl)\Bigl), \nabla v\Bigr\rangle \\ &-pbw^{p-2}\Bigl({|\nabla\nabla v|_{A}^{2}}+{\rm Ric}_f(\nabla v, \nabla v)\Bigl)+\Bigl(p(m+1)-1\Bigl)\kappa v^{m-1}w^{\frac{p}{2}} . \end{align} $

Note that $ v_t-w^{\frac p2} = vF+\kappa v^{m+1}, $ and $ \langle\nabla\log v, \nabla(vF)\rangle = \langle\nabla v, \nabla F\rangle+F\frac{w}{v}. $ Thus

$ \begin{align*} \Box_f F = & \Box_f\Bigl(\frac{v_t}{v}\Bigl)-\Box_f\Bigl(\frac{|\nabla v|^p}{v}\Bigl)-\kappa\Box_f v^m \notag \\ = &pw^{\frac{p}{2}-1}\Bigr\langle\nabla( v_t-w^{\frac{p}{2}}), \nabla \log v\Bigr\rangle +2bw^{\frac{p}{2}-1}\langle A\nabla\left(\frac{v_t}{v}-\frac{w^{\frac{p}{2}}}{v}\right), \nabla v\rangle\\ &+(p-1)F\left(\frac{v_t}{v}-2\frac{w^{\frac p2}}{v}\right)-\left(\frac{v_t}{v}-\frac{w^{\frac p2}}{v}\right)\frac{w^{\frac p2}}{v}+pbw^{p-2}\Bigl({|\nabla\nabla v|_{A}^{2}}+{\rm Ric}_f(\nabla v, \nabla v)\Bigl)\\ &+\kappa mv^{m-1}v_t-\kappa\Box_f v^m-\Bigl(p(m+1)-1\Bigl)\kappa v^{m-1}w^{\frac{p}{2}} \\ = &\lambda w^{\frac{p}{2}-1}\big\langle\nabla F, \nabla v\big\rangle+pbw^{p-2}\Bigl({|\nabla\nabla v|_{A}^{2}}+{\rm Ric}_f(\nabla v, \nabla v)\Bigl)+(p-1)F^2+(p-1)F\kappa v^m\\ &+\kappa bv\mathcal{L}_f(v^m)+2bm(p-1)\kappa v^{m-1}w^{\frac{p}{2}}. \end{align*} $

Proof of Theorem 1.1 For fixed $ T>0 $, we assume that $ \mathop{\max}\limits_{(x, t)\in M\times(0, T)} (t(-F))>0 $. Let $ (x_0, t_0) $ be a point where the function $ t(-F) $ achieves a positive maximum. Then at $ (x_0, t_0) $, $ \Box_f(t(-F))\ge0. $ Note that

$ F = b\Delta_{p, f}v = bw^{\frac{p}{2}-1}A^{ij}\nabla_i\nabla_j v-bw^{\frac{p}{2}-1}\nabla f\cdot\nabla v\doteqdot bw^{\frac{p}{2}-1}{\rm Tr}_A(\nabla\nabla v)-bw^{\frac{p}{2}-1}\nabla f\cdot\nabla v. $

The Cauchy-Schwartz inequality yields

$ \begin{equation} w^{p-2}|\nabla\nabla v|_{A}^{2}\ge \frac {1}{n}\Bigl(w^{\frac{p}{2}-1}{\rm Tr}_A(\nabla\nabla v)\Bigl)^2 = \frac{1}{n}\left(\frac{F}{b}+w^{\frac{p}{2}-1}\nabla f\cdot\nabla v\right)^2. \end{equation} $ (2.12)

Plugging inequality (2.12) and $ {\rm Ric}_f^{N}\ge0 $ into equation (2.9), we have

$ \begin{align} &pbw^{p-2}\Bigl({|\nabla\nabla v|_{A}^{2}}+{\rm Ric}_f(\nabla v, \nabla v)\Bigl)\\ \ge & \frac{pb}{n}\left(\frac{F}{b}+w^{\frac{p}{2}-1}\nabla f\cdot\nabla v\right)^2+pbw^{p-2}\left({\rm Ric}_f^{N}(\nabla v, \nabla v)+\frac{|\nabla f\cdot\nabla v|^2}{N-n}\right)\\ \ge & \frac{pb}{N}F^{2}-pbw^{p-2}\frac{|\nabla f\cdot\nabla v|^2}{N-n}+pbw^{p-2}\frac{|\nabla f\cdot\nabla v|^2}{N-n} = \frac{pb}{N}F^{2}, \end{align} $ (2.13)

where we use the inequality $ (a-b)^2\ge\frac{a^2}{1+\delta}-\frac{b^2}{\delta} $, $ \delta = \frac{N-n}{n}>0 $. Then,

$ \begin{align*} 0 \le & \Box_f(t(-F)) = -t\Box_f F-F\\ = &-t\left[{pbw^{p-2}\Bigl({|\nabla\nabla v|_{A}^{2}}+{\rm Ric}_f(\nabla v, \nabla v)\Bigl)+(p-1)F^2}\right.\\ &\left.{+\kappa bv\mathcal{L}_f(v^m)+\kappa (p-1)Fv^m+2bm(p-1)\kappa v^{m-1}w^{\frac{p}{2}}}\right]-F\\ \le & -\left(p-1+\frac{p}{Nb}\right)tF^2-F-\kappa t(m+1)(p-1)v^{m}F-\kappa tbm(m+1)(p-1)v^{m-1}w^{\frac p2}. \end{align*} $

It is easy to see that for any $ \gamma>0, p>1 $, $ b>0 $, and $ c(q-1)(q-1+b)>0 $,

$ \kappa bm(m+1)(p-1) = cb^{m}\gamma^{-m}(p-1)(q-1)(q-1+b)\ge0. $

Thus,

$ 0 \le -\frac{t}{\bar{a}}F^2-F-\kappa t(p-1)(m+1)v^{m}F, $

where $ \bar{a} = p-1+\frac{p}{Nb} $ and $ v_{min} = \min_M v $. This inequality is equivalent to (1.2).

3 Global Hamilton Type Difference Harnack Estimate

In this section, we establish a Hamilton type difference Harnack estimate for positive solutions to WNRDE (1.1) on weighted Riemannian manifolds.

Proposition 3.8 Let $ w = |\nabla v|^2 $ and $ v $ be as same in Lemma 2.6, we define

$ G\doteqdot\frac{w^{\frac p2}}{-v}, $

then

$ \begin{align} \Box_f G = &pbw^{p-2}\Bigl({|\nabla\nabla v|_{A}^{2}}+{\rm Ric}_f(\nabla v, \nabla v)\Bigl)+2bw^{\frac{p}{2}-1}\Bigr\langle A\Bigl(\nabla G\Bigl), \nabla v\Bigr\rangle+pw^{\frac{p}{2}-1}\langle\nabla G, \nabla v\rangle \\ &-\frac{(p-1)w^p}{v^2}-\frac{2(p-1)bw^{\frac p2}}{v}\Delta_{p, f}v-\Bigl(p(m+1)-1\Bigl)\kappa v^{m-1}w^{\frac{p}{2}}. \end{align} $ (3.1)

Proof The proof is a direct result by the simplification of (2.12).

Proof of Theorem 1.3 For some fixed $ T>0 $, we assume that $ \mathop{\max}\limits_{(x, t)\in M\times(0, T)}G>0 $. Let $ (x_0, t_0) $ be a point where the function $ G $ achieves a positive maximum. Obviously, $ t_0>0 $, $ \nabla v(x_0, t_0)\ne0 $ and

$ \begin{equation} \Box_f G\ge0, \quad \nabla G = 0. \end{equation} $ (3.2)

This proof will all be at point $ (x_0, t_0) $. According to the Cauchy-Schwartz inequality (2.12),

$ w^{p-2}|\nabla\nabla v|_{A}^{2}\ge \frac {1}{n}\Bigl({\rm Tr}_A(w^{\frac p2}\nabla\nabla v)\Bigl)^2 = \frac1n(\Delta_{p, f} v+w^{\frac{p}{2}-1}\nabla f\cdot\nabla v)^2, $

and $ {\rm Ric}_f^{N}\ge0 $, we have

$ \begin{align} &pbw^{p-2}\Bigl({|\nabla\nabla v|_{A}^{2}}+{\rm Ric}_f(\nabla v, \nabla v)\Bigl)-\frac{2(p-1)bw^{\frac p2}}{v}\Delta_{p, f}v\\ \le&\frac{pb}{N}(\Delta_{p, f}v)^2-\frac{2(p-1)bw^{\frac p2}}{v}\Delta_{p, f}v\le-\frac{Nb(p-1)^2}{p}\frac{w^p}{v^{2}}. \end{align} $ (3.3)

Together with (3.1), one has

$ \begin{align} 0\le&\Box_f (tG) = t\Box_f G+G \\ \le&-\frac{tNb(p-1)^2}{p}\frac{w^p}{v^{2}}-\frac{(p-1)w^p}{v^2}-\Bigl(p(m+1)-1\Bigl)\kappa v^{m-1}w^{\frac{p}{2}}+G. \end{align} $ (3.4)

When $ 0\ge b\ge-\frac{p}{N (p-1)} $, $ v = \frac{\gamma}{b}u^b<0 $, $ G = \frac{w^{\frac p2}}{-v}>0 $, then we get the Hamilton type estimate from (3.4),

$ \begin{equation*} G\le\frac{p}{(p-1)(Nb(p-1)+p)}\left(\frac1t+\kappa(p(m+1)-1)v_{Max}\right), \end{equation*} $

where $ v_{Max} = \max_M v^m $.

4 Applications of Difference Harnack Estimates

Proof of Corollary 1.4 Let $ \sigma(t) $ be a constant speed geodesic with $ \sigma(t_1) = x_1 $, $ \sigma(t_2) = x_2 $, and $ p^* = \frac{p}{p-1} $. Combining Theorem 1.1 and the Young inequality, we obtain

$ \begin{align*} v(x_2, t_2)-v(x_1, t_1)& = \int _{t_1}^{t_2}v_t+\langle \nabla v, \dot{\sigma}\rangle dt\\ &\ge\int _{t_1}^{t_2}\kappa v^{m+1}-\left(\frac {\bar{a}}{t}+(p-1)(m+1)\kappa \bar{a}v_{min}^{m} \right)v-\frac{1}{p^{\frac{1}{p-1}}p^*}\left(\frac{d(x_1, x_2)}{t_2-t_1}\right)^{p^*} dt. \end{align*} $

When $ c>0 $, $ q>1 $, we can deduce $ m>0 $, then

$ \begin{align*} &\int _{t_1}^{t_2}\kappa v^{m+1}-\left(\frac {\bar{a}}{t}+(p-1)(m+1)\kappa \bar{a}v_{min}^{m} \right)v-\frac{1}{p^{\frac{1}{p-1}}p^*}\left(\frac{d(x_1, x_2)}{t_2-t_1}\right)^{p^*} dt\\ \ge&-\bar{a}v_{max}{\log}\left(\frac{t_2}{t_1}\right)-\kappa v_{min}^{m}((p-1)(m+1) \bar{a}v_{max} -v_{min})(t_2-t_1)-\frac{{d(x_1, x_2)}^{p^*}}{p^{\frac{1}{p-1}}p^*(t_2-t_1)^{\frac{1}{p-1}}}. \end{align*} $

When $ c>0 $, $ q<1-b $, we can deduce $ m+1<0 $, then

$ \begin{align*} &\int _{t_1}^{t_2}\kappa v^{m+1}-\left(\frac {\bar{a}}{t}+(p-1)(m+1)\kappa \bar{a}v_{min}^{m} \right)v-\frac{1}{p^{\frac{1}{p-1}}p^*}\left(\frac{d(x_1, x_2)}{t_2-t_1}\right)^{p^*} dt\\ \ge&-\bar{a}v_{max}{\log}\left(\frac{t_2}{t_1}\right)-\kappa v_{min}^{m+1}((p-1)(m+1)\bar{a} -1)(t_2-t_1)-\frac{{d(x_1, x_2)}^{p^*}}{p^{\frac{1}{p-1}}p^*(t_2-t_1)^{\frac{1}{p-1}}}. \end{align*} $

Proof of Corollary 1.5 Let $ \sigma^*(t) $ be a shortest speed geodesic with $ \sigma^*(0) = x_1 $, $ \sigma^*(1) = x_2 $, such that $ |\dot{\sigma^*}| = d(x_2, x_1) $, $ p^* = \frac{p}{p-1} $. Combining Theorem 1.3 and the Young inequality, we have

$ \begin{align*} {\rm log}\frac{v(x_1, t)}{v(x_2, t)}&\le\int _{0}^{1}\frac{ |\nabla v|\cdot|\dot{\sigma^*}|}{-v(\sigma^*(s), t)} ds\\ &\le \frac{1}{(p-1)(Nb(p-1)+p)}\left(\frac1t+\kappa(p(m+1)-1)v_{Max}\right)-\frac{d^{p^*}(x_1, x_2)}{p^*v_{max}}. \end{align*} $
References
[1] Li P, Yau S T. On the parabolic kernel of the Schrödinger operator[J]. Acta Mathematica, 1986, 156(3): 153–201.
[2] Kotschwar B, Ni L. Local gradient estimate for p-harmonic functions, 1/H flow and an entropy formula[J]. Annales Scientifiques de Lécole Normale Supérieure, 2009, 42(4): 1–36.
[3] Wang Y Z, Yang J, Chen W Y. Gradient estimates and entropy formulae for weighted p-heat equations on smooth metric measure spaces[J]. Acta Mathematica Scientia, 2013, 33B(4): 963–974.
[4] Wang Y Z. Differential Harnack estimates and entropy formulae for weighted p-heat equations[J]. Results Math., 2017, 71(3): 1499–1520.
[5] Lu P, Ni L, Vázquez J L, Villani C. Local Aronson-Benilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds[J]. Journal de Mathématiques Pures et Appliquées, 2009, 91(9): 1–19.
[6] Wang Y Z, Chen W Y. Gradient estimates and entropy monotonicity formula for doubly nonlinear diffusion equations on Riemannian manifolds[J]. Math. Methods Appl. Sci., 2014, 37(17): 2772–2781. DOI:10.1002/mma.3016
[7] Wang Y Z, Wang X M. Gradient estimates for nonlinear reaction-diffusion equations on Riemannian manifolds[J]. submitted.
[8] Bakry D, Émery M. Diffusion hypercontractivitives. Séminaire de Probabilités XIX, 1983/1984[J]. Lecture Notes in Math, Vol 1123. Berlin: Springer-Verlag, 1985: 177-206.
[9] Li X D. Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds[J]. J. Math. Pures Appl., 2005, 84(16): 1295–1361.
[10] Hamilton R S. A matrix Harnack estimate for the heat equation[J]. Comm. Anal. Geom., 1993, 1: 113–126. DOI:10.4310/CAG.1993.v1.n1.a6
[11] Yan S, Wang L F. Elliptic gradient estimates for the doubly nonlinear diffusion equation[J]. Nonlinear Anal., 2018, 176: 20–35. DOI:10.1016/j.na.2018.06.004