|
摘要: |
对α > 0,本文主要研究了复平面上的加权Fock空间Fα2上的自伴算子和线性算子的测不准原理.利用泛函分析中的一般性原理,在Fα2上构造了两个线性算子Tf=f'/α和T*=zf.进一步,构造了满足条件的两个自伴算子A和B,使得[A,B]为恒等算子的常数倍,得到了Fα2上更精确的算子的测不准原理形式,其中T*是T的对偶算子,[A,B]=AB-BA为A和B的换位置.本文的结果推广并完善了屈非非和朱克和在文献[1]和[2]中的结果. |
关键词: 加权Fock空间 测不准原理 线性算子 自伴算子 高斯测度 |
DOI: |
分类号:O174.5 |
基金项目:Supported by National Natural Science Foundation of China (11561012; 11861024). |
|
FURTHER DISCUSSION ON UNCERTAINTY PRINCIPLES FOR THE α-FOCK SPACE Fα2 |
PAN Wei-ye,YANG Cong-li,ZHAO Jian
|
Abstract: |
In this article, for α > 0, we characterize several versions uncertainty principles of self-adjoint operators and linear operators for the α-fock space Fα2 in the complex plane. By using the general result from functional analysis, we find two linear operators Tf=f'/α and T*=zf to construct two self-adjoint operators A and B such that[A, B] is a scalar multiple of the identity operator on Fα2, and obtain some more accurate results about the uncertainty principles for the α-fock space Fα2, where T* is the adjoint of T,[A, B]=AB -BA is the commutator of A and B, which extends and completes the results of Qu[1] and Zhu[2]. |
Key words: α-fock space uncertainty principles linear operators self-adjoint operators Gaussian measure |