|
摘要: |
本文研究了有理数域Q的二次扩域Q (√d)的整数环Rd的商环的单位群.利用二项式分解以及有限交换群的结构性质,获得了d=-3,-7,-11,-19,-43,-67,-163时Rd/<ϑn>的单位群结构,其中ϑ是Rd的素元,n是任意正整数.所得的结果推广了由J.T.Cross (1983),G.H.Tang与H.D.Su (2010)对d=-1,以及Y.J.Wei (2016)对d=-2时关于Rd/<ϑn>的单位群的研究. |
关键词: 虚二次环 商环 单位群 二次扩域 |
DOI: |
分类号:O152.1;O156.1 |
基金项目:Supported by the National Natural Science Foundation of China (11461010; 11661013; 11661014); the Guangxi Science Research and Technology Development Project (1599005-2-13). |
|
ON THE UNIT GROUPS OF THE QUOTIENT RINGS OF IMAGINARY QUADRATIC NUMBER RINGS |
WEI Yang-jiang,SU Lei-lei,TANG Gao-hua
|
Abstract: |
In this paper, we investigate the unit groups of the quotient rings of the integer rings Rd of the quadratic fields Q(√d) over the rational number field Q. By employing the polynomial expansions and the theory of finite groups, we completely determine the unit groups of Rd/<ϑn> for d=-3, -7, -11, -19, -43, -67, -163, where ϑ is a prime in Rd, and n is an arbitrary positive integer. The results in this paper generalize the study of the unit groups of Rd/<ϑn> for d=-1, which obtained by J. T. Cross (1983), G. H. Tang and H. D. Su (2010) and for the case d=-2 by Y. J. Wei (2016). |
Key words: imaginary quadratic number ring quotient ring unit group quadratic field |