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Abstract: In this paper, we investigate the unit groups of the quotient rings of the inte-
ger rings Ry of the quadratic fields Q(\/ﬁ) over the rational number field Q. By employing the
polynomial expansions and the theory of finite groups, we completely determine the unit groups of
Rq/{¥") ford = -3, —7, —11, —19, —43, —67, —163, where ¢ is a prime in Rq, and n is an arbitrary
positive integer. The results in this paper generalize the study of the unit groups of Rq/(9") for
d = —1, which obtained by J. T. Cross (1983), G. H. Tang and H. D. Su (2010) and for the case
d=—-2byY.J Wei (2016).
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1 Introduction

Let K = Q(V/d), the quadratic field over Q, where @Q is the rational number field and d
is a square-free integer other than 0 and 1. The ring of algebraic integers of K is denoted
by Ry, and it is very important for the study of dynamical systems, e.g., see [1, 2]. We
call R4 an imaginary quadratic number ring if d < 0. From the work of Stark [3], we know
that there are only finite negative integers d such that the complex quadratic ring Ry is a
unique-factorization domain, namely, d = —1, -2, -3, -7, —11, —19, —43, —67, —163. For an
arbitrary prime element ¢ € Ry, and a positive integer n, the unit groups of Ry/(¥") were
determined for the cases d = —1, —2, —3 in [4-6], respectively. Moreover, the square mapping
graphs for the Gaussian integer ring modulo n is studied in paper [7]. In this paper, we
investigate the unit groups of Ry/{(¥") for the cases d = —3,—7,—11,—19, —43, —67, —163,
and we make some corrections to the case of d = —3 in paper [6].

Throughout this paper, we denote by Z the set of rational integers, Z, is the additive

cyclic group of order n, Z/(n) is the ring of integers modulo n, and o(f) is the order of € in
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a group. For a given ring R, let U(R) denote the unit group of R, let () denote the ideal of
R generated by v € R. If 7 is an element of a given group G, we also use () to denote the
subgroup of G generated by v € G. The Legendre symbol (%), where a is an integer, p is a
prime and p{ a, is defined as follows: if there exists an integer = such that 2% = a (mod p),
then () = 1, otherwise, (3) = —1.

Lemma 1.1 [8, Lemma 2.4.2] The ring Ry of algebraic integers of K = Q(V/d) is

(1) Rg={a+bVd: a,bcZ},if d= 2,3 (mod 4).

(2) Ry={i(a+bVd): a,b€ Z are of the same parity}, if d = 1 (mod 4).

By Lemma 1.1, for d = —3,—7,—11,—19, —43, —67, —163, the elements of R, are all
of the form %(a + b\/&), where a,b € Z are of the same parity. Moreover, we know that
U(Ry) ={£1} for all d = -3, —-7,—11,—19, 43, —67, —163.

Now, we need to identify all primes in the ring R;. The following theorem is obtained
from [9, Theorem 9.29].

Theorem 1.2 Ford = -3, -7, —11, —19, —43, —67, —163, up to multiplication by units,
the primes of R, are the following three types (D = —d):

(1) p, where p € Z is a prime satisfying the Legendre symbol (&) = —1;

(2) 7 or 7, where ¢ = 77 € Z is a prime satisfying the Legendre symbol (%) = 1;

(3) 6 =+d.
2 Main Results

Throughout this section, d = —3, -7, —11, —19, —43, —67, —163. For conveniences, we
denote by D = —d. Let n be a positive integer, and ¢ is a prime in R;. We determine the
structure of unit groups of R,/ (9").

First, we characterize the equivalence classes of Ry/(9™), where 9 is prime in R,. For a €
R, we denote by [a] € Ry/(¥") the equivalence class which o belongs to. Simultaneously,
we make corrections to the equivalence classes which are given in [6, Theorem 3.2] for the
case d = —3.

Theorem 2.3 Let 9 denote a prime of Ry, § = V/d, D = —d. For an arbitrary positive
integer n, the equivalence classes of R,;/(9") are of the following types:

(1) Ra/(6>™) ={[ri+rVd]: 0K <D™ =11 €Z,i=1,2}, m>1;

(2) Ra/(8*™ Yy ={[ri +rvVd]: 0<r <D™ —1,0<r, <D™ —1L,r,r2 €Z},m

WV

0;

(3) Ra/(p") = {[r1 +r2Vd]: 0<r; <p"—1,r; € Z,i=1,2}, where pis an odd prime
in Z satisfying the Legendre symbol (5) = —1;

(4) Ry/(m™y ={la] : 0<a<¢*—1,a € Z}, where ¢ = 77 is a prime in Z satisfying
the Legendre symbol (4) = 1;

(5) Suppose that d # —7. Then

(a) Ra/(2) = {[0], (1], [5+5Vd] [5—5Vd]};
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(b) For n > 2, Ry/(2") = R; U Ry U R3, where

Rl = {[7’14’7"2\/&}2 O<Ti<2"_1—1, TiEZ, @:1,2}7
Ry, = {[7”1—7”2\/&}2 0<r <2 =1, 1<rp<2v, rl,rgeZ},
Ry = {[%i%\/&]: 1<r<2" =1, r, €Z, QJ(TZ., z’:l,g}.

Proof (1) As 6*™ = d™, we get that (6*™) = (D™). Suppose o = a; + aVd € Ry,
where ai,a0 € Z. Let a; = D™k; +r; with 0 < r; < D™ -1, k; € Z, i = 1,2. Then
a=(r+ 7“2\/&) + D™ (ky + kg\/&) So o and 7y +79Vd belong to the same equivalence class
of Ry/(6*™).

On the other hand, let 8 = %(ln + byv/d) € Ry, where by and by are odd integers.
Since D is odd for ¢ = 1,2, there exists a unique integer g; € {0,1,---, D™ — 1} satisfying
the congruence 2g; = b; (mod D™). Hence, there exists an odd integer x; such that b; =
D™x; 4 2g;, i = 1,2. Therefore, v = & + %2\/& € Ry, and B = (g1 + g2V/d) + D™, which
implies that 3 and g; + gov/d belong to the same equivalence class of R;/(6*™). Finally, it
is easy to verify that the classes of (1) are distinct.

(2) As 6>+ = d™§, we get that (§2™+!) = (D™V/d). Suppose a = a; + asVd € Ry,
where a1, a9 € Z. Let a; = D™k + 17, with 0 <y < D™ — 1. Let ap = D™ky + 1o with
0<ry <D™ —1. Then a = (r; + roV/d) + D™Vd(ky — k1v/d). So o and 71 + r53/d belong
to the same equivalence class of Ry/(62™*1).

On the other hand, let 8 = %(bl + byv/d) € Ry, where by and by are odd integers.
Since D is odd, there exists a unique integer g; € {0,1,--- , D™"! —1} satisfying congruence
2g; = by (mod D™T'). Analogously, there exists a unique integer go € {0,1,---, D™ — 1}
satisfying congruence 2¢g> = by (mod D™). Therefore, there exist odd integers z;,xs such
that by = D™z, + 2g;, and by = D™xy + 2go. Hence, v = 2 — ©+/d € Ry, and
B = (g1 + g2Vd) + Dm\/g(%2 - ’"2—1\/&), which implies that 3 and ¢; + g»v/d belong to the
same equivalence class of Ry/(62™ ).

Finally, it is easy to verify that the classes of (2) are distinct.

(3) Tt can be proved with the similar method to (1). Suppose @ = a; + axVd € Ry,
where ay,a0 € Z. Let a; = p"k; +r; with 0 < r; < p" —1, k; € Z, i = 1,2. Then
o = (11 +72V/d) + p"(ky + k2v/d). So o and 71 4 r21/d belong to the same equivalence class
of Ra/(5").

On the other hand, let 3 = %(bl + byv/d) € Ry, where by and by are odd integers.
Since p is odd for i = 1,2, there exists a unique integer g; € {0,1,---,p" — 1} satisfying the
congruence 2g; = b; (mod p™). Hence, there exists an odd integer x; such that b, = p"x;+2g;,
i = 1,2. Therefore, v = 3 + “;—2\/& € Ry, and 8 = (g1 + g2V/d) + p™y, which implies that 3
and g1 + g2V/d belong to the same equivalence class of Ry/(p"). Finally, it is easy to verify
that the classes of (3) are distinct.

(4) Let ¢ = 77 be a prime in Z satisfying the Legendre symbol (&) = 1. Let 7" =
L(s+ tv/d), where s,t € Z are of the same parity. Then it is clear that ¢ { st. Suppose that
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6= %(b1+b2 \/&) € Ry, where by, by € Z are of the same parity. We show that in the quotient
ring Ry/{m™), 3 belongs to the equivalence class [a] for some a € {0,1,--- ,¢"™ — 1}. Indeed,
Let v = 3 (z + yvd) € Ry, where z,y € Z are of the same parity, such that § = a 4+ 7"7.
Then the following equations hold

1 1 1
a+ 7% + Zdyt = §b17 (2.1)
1 1 1
— —xt = —bs. 2.2
Ty + 1 xt 5 by (2.2)

Now we solve the integer a from the above equations. By equation (2.1), we obtain
4as + xs® + dyts = 2b; s. (2.3)

And by equation (2.2), we get —dyts—dt>x = —2bydt. Eliminating dyts between this equation
and (2.3), we obtain
4as + x(s* — dt?) = 2(bys — dbat). (2.4)

Note that ¢ = 77 and 7" = £ (s+¢V/d), we have s> —dt? = 4¢". Substituting this into (2.4),
it follows that
das + 4q"x = 2(bys — dbat). (2.5)

Moreover, since s,t € 7Z are of the same parity and b;,by € Z are of the same parity and
note that d is odd, we derive b;s — dbst is even. Hence, equation (2.5) can be written as
as + ¢"x = +(bys — dbst), which implies that

as = é(bls — dbyt) (mod ¢"). (2.6)

Because ¢ t s, the last congruence (2.6) in @ has a unique solution a € {0,1,---,¢" — 1}.
Therefore, 5 belongs to the equivalence class [a], as desired.

Finally, it is easy to verify that the classes of (4) are distinct.

(5) Suppose d # —7.

(a) We first determine the structure of the quotient ring R,;/(2). Suppose oy = a € Z.
If a is even, then & € Ry. It follows from oy = 0+ 2 X - that a; belongs to the equivalence
class [0] in the quotient ring R;/(2). If a is odd, then a = 1 + 2k for some k € Z. Then
clearly a; belongs to the equivalence class [1].

Suppose s = bv/d, where b € Z. If b is even, then %\/& € R;. We have

Q2 =b/d=0+2x %\/g
So clearly a, belongs to the equivalence class [0]. If b is odd, then
1 b

Therefore, as belongs to the equivalence class [1].
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Suppose a3 = s + tvd € Ry, where s,t € Z. If s and t are of the same parity, then
£ + LVd € Ry. Moreover, we have s +tv/d = 0+ 2($ + £+/d). Hence, as belongs to the
equivalence class [0]. If s and ¢ are not of the same parity, then g t\f d € R4. Since
s+tvd=1+ 2(% + %\/&), we obtain that o belongs to the equlvalence class [1].

Now, suppose oy = %Jr%\/g, where x = 2k1+1, y = 2ko+1, k1, ko € Z. If k1 and ks are
of the same parity, then % + %2\/67 € R;. Moreover, since ay = (% + %\/&) + 2(% + %\/&),

we obtain that ay belongs to the equivalence class [% + %\/E] If k1 and k, are not of the

same parity, then & + %\/& € Ry. Furthermore, ay = (4 — +vd) + 2(% + k= Vd).
Thus, a4 belongs to the equivalence class [§ — +V/d].

Finally, we show that the classes of (5) (a) are distinct. Clearly
1 1
0] # (1) # [ + 2 V] £ 0]

If (1 +1Vd] = [L — LVd], then there exits v = & + 22\/d € Ry, where 21,2, € Z are of
the same parity, such that

5+ VA= (5 = 5V + 25+ 2V,

Clearly, the above equatlon holds if and only if ;1 = 0 and x5 = 1, which is impossible since
1,2 € Z must be of the same parity. Hence, we conclude that [+ + $v/d] # [£ — V4.
Therefore, the classes of (5) (a) are distinct.

(b) Now, let n > 2. We determine the structure of the quotient ring Ry/(2"). Suppose
61 = a;+asVd € R, where aq,as € Z. Let a; = 2" Yk +r;, ki,r; € Z,and 0 < ry <2771 -1
for i = 1,2. First, if k; and ky are of the same parity, then % + %\/& € R4. Moreover, since
b= (r1+ 7"2\/3) + 2"(% + %\/&), we conclude that 8, and r, 4+ r2v/d belong to the same
equivalence class in the quotient ring R;/(2"). Secondly, if k; and ko are not of the same
parity, then %—F%\/& € Ry. Since By = [r — (2" —1;)Vd] +2n (&4 %\/&), we obtain
that 3, and 7 — (2! — 7“2)\/67 belong to the same equivalence class. Furthermore, since
0<ro <27 — 1, we derive that 1 < 2" ! — 7y, <2771, So in the second case, i.e., k; and
ko are not of the same parity, we get that §; and r; — r ’2\/& belong to the same equivalence
class, where 1 <7, < 2" ! and r{ =2""1 —r,.

Next, suppose that 8, = ZA + @f d, where b; and by are odd integers. Let b; = 2"k; 4+,
where k;,r; € Z, 1 <7r; < 2" —1and 2 {r; for i = 1,2. First, if k; and ks, are of the same
parity, then kl + k2\[ d € Ry. Moreover, since 3y = (5 + %f) + 2”(% %2\[), we obtain
that G, and ’“21 = V/d belong to the same equivalence class. Secondly, if k; and ks, are not
of the same parity, then % + £25L\/d € R,. Since 8, = (% — 2572/d) + 27 (& + £2£1/4),
it follows that (3, and %+ — 277%’”2\/& belong to the same equivalence class. Furthermore,
according to 1 < rp < 2" — 1, we have 1 < 2" —ry < 2" — 1. So, in the second case, i.e.,
k1 and ko are not of the same parity, we obtain that G, and & — —\[ d belong to the same
equivalence class, where 1 <75 < 2" —1 and rf = 2" — ro.

Finally, we claim that the classes of (5) (b) are distinct. We only show that

5+ 3Vl # 5 - 2V,
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where r;, z; € {1,3,++,2"—1} with 2 { ryz; for i = 1,2. Indeed, if [ +2/d] = [4 —2V/d],
then there exit tq,ty € Z of the same parity such that

Ty T2 T1 T ty | to
— 4+ 2Vd= (= - Z2Vd)+ 2" (= + 2Vd).
2+2\f (5 2f>+ <2+2f)

So we obtain 1 = x7 + 2™t; and ro = —x5 + 2™t5. It is easy to show that ¢ = 0 and t; =1,
which is a contradiction.

Example 2.4 To illustrate the case d = —19, ¢ = 23 = 77 and n = 2, let v =
%(bl + byy/—19) € Ry, where by = 3 and by, = 1. We give the equivalence class in Rq/(7?)
which v belongs to. Since 7 = 2 — +/—19 is a proper factor of q in Ry, 72 = —15 —4y/—19 =
=30 — 8,/-19. Denoted by s = —30, t = —8. Substituting the values for s,t,b,bs,d,q and
n into congruence (2.6), we get that a = 198 is a solution to congruence (2.6). Moreover,
substituting the values for a, s,t, by, bs and d into equations (2.1) and (2.2), we have x = 11
and y = —3. Therefore,

3 1 13
=2 4 /19 =198 + 72 (— — —/—1
gt V=18 m (o - 5 v-lo),

which implies that v belongs to the class [198].

As an easy consequence of Theorem 2.1 (5), we have

Corollary 2.5 Suppose that 2 is prime in Ry. Let a = [a + bVd] € Ry/(2"), where
0<a,b<2" 1 —1,a,b€Z. Then

(1) a=[1] if and only if @ = 2" 'ky + 1, b = 2" 'ky, where kq, ks € Z are of the same
parity.

(2) If a = 2"k, + 1, b = 2"ky, ki1, ke € Z, then o = [1].

Now, we determine the structure of unit groups of R,;/(¥") for an arbitrary prime
¥ of Ry First of all, we consider the case of ¥ = § = Vd. Let R = Ry/(0"). For
a = [a+bVd] € R, it is easy to show that o € U(R) if and only if d { (a*> — db?), if and only
if d 1 a, if and only if D 1 a.

Theorem 2.6 Let R = R;/((v/d)"), n is an arbitrary positive integer. Let D = —d.
Then the unit groups U(R) of R are as the follows:

1) Let n=1. Then U(R) &< Zp_;.

9) Let n = 2. Then U(R) 2= Zp_, x Zp.

3) Let n = 2m with m > 2.

a) If d # —3, then U(R) 2 Zp_1 X Zpm-—1 X Zpm;

b) If d = =3, then U(R) & Zy X Z3 X Zgm-1 X Lgm-1.

(4) Ifn=2m+1 with m > 1, then U(R) £ Zp_1 X Zpm X Zpm.

Proof (1) If n = 1, by Theorem 2.1 (2), R is a field of order D = —d, so |U(R)| = D—1.
Therefore, U(R) is a cyclic group of order D — 1 and hence U(R) = Zp_;.

(2) If n = 2, then |[U(R)| = —d(—d — 1) = D(D — 1). Note that D is a prime, moreover

D and D — 1 are relatively prime, we get that U(R) & H X Zp, where H is a subgroup of

(
(
(
(
(

order D — 1. Moreover, we can easily show that D — 1 is square-free for D = 3,7,11,43 and
67.
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On the other hand, if D = 19, then D — 1 = 2 x 32, clearly [4] € U(R) is of order 32. If
D =163, then D — 1 = 2 x 3%, clearly [4] € U(R) is of order 3*. Therefore H = Zp_;. So
U(R) =2 Zp_1 X Zp.

(3) (a) Suppose that d # —3. Let n = 2m with m > 2. Let o = [a + bV/d] € R, where
a,be {0,1,---,D™ —1}. Since a € U(R) if and only if D {a, [U(R)| = (D —1)D?*™~!, and
we can write U(R) = P x H, where P, H are finite groups, and |P| = D — 1, |H| = D*™~1,

We determine the structure of H. Let a = [a + bv/d] € R with D { a. By Theorem 2.1
(1), for an arbitrary odd integer W > 1, o' equals to the equivalence class [1], i.e., o'V = [1]
if and only if the following congruences hold

w-—1

AV +d(W)a"V T+ d 7 (W) ab Tt =1 (mod D™), (2.7)
WYa" b4 d(W)a" B 4+ d 7 bW = 0 (mod D™). 2.8
1 3

First, we claim that for any o € H, " = [1]. Let W = D™. Since d™|d (4] ) for

P™ = 1 (mod D™). It is well known that
the unit group of the ring Z/(D™) is isomorphic to Zpm-1 X Zp_1. Hence, we obtain that
aP” = 1(mod D™) if and only if a € Zpm-1. So in the set {0,1,---, D™ — 1}, there are
precisely D™~! elements a such that a®” = 1(mod D™).

j = 1, the congruence (2.7) is equivalent to a

On the other hand, since d™ | d’ (QJ-VYH) for j > 0, congruence (2.8) holds for any positive
integer b. Therefore, we can conclude that oV = [1] if and only if a € Zpm-1 and b €
{0,1,---, D™ — 1}. Hence, the number of a € U(R) satisfying o = [1] is

Dm—l x D™ = D2m—1'

Recall that U(R) = P x H with |[P| = D — 1 and |H| = D>, we get that a”" = [1] for
acH.

Second, we consider the number of a € U(R) satisfying a?" = [1]. Let W = D™ !,
Since d™ |d/ (%) for j > 1, congruence (2.7) holds if and only if a®"" = 1 (mod D™), if
and only if a € Zpm-1.

On the other hand, note that d # —3 and d™ | &’ (QjVYH) for 1 < j < %, congruence
(2.8) is equivalent to D™ 1aP" ' ~1p = 0 (mod D™). That is, D™ b = 0 (mod D™),
since D { a. Hence, we obtain d|b. So the solutions to congruence (2.8) are b = D -
with [ = 0,1,---,D™ ' — 1. Thus the number of a € U(R) satisfying o®" " = [1] is

D™=t x D™=t = D*™=2_ Then the number of elements of order D™ in U(R) is
D2m71 _ D2m72 — d2m72(_d _ 1)

Finally, let we calculate the number of o € H satisfying a?" = 1 (mod D™). Let
W = D™=2. Since d™ | & (4%, ) for 2 < j < WL, congruence (2.8) holds if and only if

Wa" b [6a* + d(W — 1)(W —2)b*] = 0 (mod D™). (2.9)

Since Dt a and d # —3, we derive that D 1 [6a® + d(W — 1)(W — 2)b?]. So congruence (2.9)
holds if and only if d*| b, i.e., congruence (2.8) holds if and only if d* | b. Furthermore, in the
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case of d? | b, we have d™ | d’ () b* for j > 1. Hence, in the case of d*|b congruence (2.7)
holds if and only if ¢ = 1 (mod D™). Clearly, the number of solutions of the last congruence
is D=2 Thus the number of o € H such that o®" " =1is D™ 2 x D™=2 = 2m~4_ So

we derive that the number of elements of order D! in U(R) is
D=2 _ p*mt = grmed(g? 1), (2.10)

Now, let 8 = [1 + \/;l] € R. Then by the above argument, we know that 3 is of order
D™. Since m > 2, clearly § € H. Therefore Zp is a subgroup of H and we can suppose
H = 7Zpm X Zpiy X -+ X Lpi,, where ly + -+l =m—1. f h > 2, then 1 <[, <m —2
for i = 1,--- ,h and hence there are exactly (D — 1) - D*™~3 elements in H of order D™},
which contradicts the above result (2.10). If h = 1, then H = Zpm X Zpm-1. Therefore, the
number of elements of order D™~ ! in H is D™~ x D™~ — Dm=2 x Dm=2 = ¢2m~4(d? — 1),
which is the same as (2.10). So we can conclude that h =1 and H = Zpm X Zpm-1.

In the following, we determine the structure of the subgroup P of U(R), where |P| =
—d — 1. Clearly, —d — 1 is square-free for d = —7,—11, —43, —67 and hence P = Zp_; in
these cases. If d = —19, then |P| = 18 = 2 x 3%

On the other hand, let a < 19™ be a positive integer. If a'® = 1 (mod 19™) for
some integers t > 1, then clearly a = 1 4+ 19z for some non-negative integers x. Hence,
419" £ 1 (mod 19™) and (4%)'" # 1 (mod 19™) for any ¢ > 1. Furthermore, we have

499" = 96214419

= (19 x 13797+ 1)"""
= 19" x 1379707
1 (mod 19™).

19 X 19 x 13797 + 1

Thus, if d = —19, the class [4] € R is of order 32-19™71, so P = 7y x 732 = Z15. Analogously,
if d = —163, we have

g81x163m 7t (481 — 14+ 1)163’"—1
— (481 _ 1)163”"71 + 163m_1(481 _ 1)16377171—1 4+t 163m—1<481 _ 1) + 1
= 1 (mod 163™).
Since 163 | (43! — 1), the element [4] € R in the case of d = —163 is of order 3* x

163™71, so P = Zgy X Zss = Zyge. Therefore, we can conclude that P = Zp_; for

d=—17,-11,-19,—43, —67, —163. Accordingly, U(R) = P x H = Zpm X Zpm-— X Zp_1, as
desired.

(b) Suppose that d = —3, n = 2m, m > 1. Let a = [a + bV/d] € U(R), where

a,be {0,1,---,3™ —1} and 31 a. Since |U(R)| =2 x 3?71 we can write U(R) & Zy x Q,
where |Q| = 32"~1. We claim that o®" ' = [1] for a € Q. Let W = 3™, Since 3 |37 (¥)
for j > 1, congruence (2.7) holds if and only if ¢®"~ = 1 (mod 3™), if and only if a € Zgm—1.
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On the other hand, note that 3™ |3/ (2j+1) for 2 < j < %, congruence (2.8) is

equivalent to
m—1 _ 1 m—1 __ 2
bla® — 3 )2(3 )b2 =0 (mod 3). (2.11)

If 3| b, then clearly congruence (2.11) holds. If 3 1 b, we show that congruence (2.11) holds,

too. Indeed, since 3 1 b, it follows from congruence (2.11) that

20 — (3™ — 1)(3™ ' — 2)b*> =0 (mod 3). (2.12)

Moreover, we have 2a? = 2 (mod 3) for 3 a. Thus congruence (2.12) reduces to 2 — 2b? =
0 (mod 3). The last congruence holds for 3 { b. Hence, congruence (2.12) holds for any

integers b. So we can conclude that o3” " = [1] if and only if

a € Zyn, be{0,1,--- 3™ —1}. (2.13)

Thus there are precisely 3™~! x 3™ = 32"~ clements o € U(R) such that o®" = [1].
Recall that |Q| = 32", we obtain o®" " = [1] for o € Q.

Next, we show that there exist elements in @ with order 3™~!. Indeed, putting W =
3m=2, Substituting the value for W into congruence (2.7). Note that 3™ |37 (3n 2) for
j = 2, we derive that congruence (2.7) holds if and only if

3771.72 gm— 2

2a —3m7 3™ 2 —1)a®" " ?p* =2 (mod 3™). (2.14)

If we substitute a = b = 1 into congruence (2.14), we have 3™~1(3m~2 — 1) = 0 (mod 3™),
which is impossible for m > 2. Accordingly, congruence (2.7) does not hold for a = b = 1,
which implies that (1-+v/—3)3" " # [1]. Moreover, by the condition (2.13), (14++/—=3)3" "
1]. So 8 = [1 ++v—3] € Q. Hence f3 is of order 3™, So (1 + /=3) = Zgm-1. Thus
Q = Zgm-1 x J, where J is a subgroup of ) with order 3.

Now, we claim that there are elements in J with order 3™~!. We first note that (1 +
V—=3)% = =8, thus (1 +v/—=3)* € Z for t > 1. Moreover, since (1 + v/—3)? = =2 + 2,/=3,
we conclude that (1 + v/—3)* = = + yv/—3, where 31y and 3 1 s. Let v = [1 + 3v/=3]. By
condition (2.13), v € Q. Thus AT = [1] but v € (1 4+ +/=3). Hence, v € J. Substituting

a=1,b=3and W = 3™? into congruence (2.8), and note that 3™ |3/ (‘;;:f) for j > 2,
we derive that congruence (2.8) holds if and only if
3m+1 3m—2 -1 3m—2 —92
3m-1— ( 5 I ) =0 (mod 3™).
The above congruence does not hold for m > 2. It follows that (1+3v/=3)3" " # [1]. Thus,

~ € J is of order 3™~ !. Hence, Zsm—1 is a subgroup of J, and J = Zgm-1 X Zs. Accordingly,
if d = =3, then U(R) & Zy X Z3 X Zm-1 X ZLzm-1, as desired.

(4) (a) Suppose that d # —3. Let n = 2m + 1 with m > 1. For a = [a + bV/d] € R, we
know that o € U(R) if and only if D { a. Then, for n = 2m+1 we have |U(R)| = (D—1)-D*™.
So U(R) = K x G, where K, G are finite groups, and |K| =D — 1, |G| = D*™.
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We now determine the structure of G. Consider the polynomial expansions of o, where
X is an arbitrary integer. By Theorem 2.1 (2), aX equals to the equivalence class [1] if and

only if the following congruences hold

X—-1
2

o +d(5)a* P+ +d7 7 (55)ab¥ =1 (mod D™, (2.15)
X—-1

(X)a* o +d(¥)a*2* +---+d" 2 b* = 0 (mod D™). (2.16)

Firstly, putting X = D™, and noting that D™ | &’ (D;) for j > 1, we derive that congru-
ence (2.15) holds if and only if a®” = 1 (mod D™*'), if and only if a € {1,2,---, D™ —1}
with a € Zpm. Therefore, congruence a®” = 1 (mod D™*') has precisely D™ solutions.
On the other hand, congruence (2.16) holds for b € {1,2,---,D™ — 1}. Hence, the
number of elements in U (R) satisfying " = [1] is D" x D™ = D?™. Recall that |G| = D?™,
we derive that o”" = [1] if and only if a € G.
Secondly, substituting X = D™ into congruence (2.16). If o' = [1], clearly « € G.

Since d # —3, we have D™ &’ (B")") for j > 1. Therefore, congruence (2.16) holds if and

2j+1
only if D |b. In the case of D | b, congruence (2.15) holds if and only a®” ' = 1 (mod D™*1),
if and only if @ € Zpm-1. Therefore, the number of elements in G satisfying a?" " = [1] is
D™=t x Dm=1 = D?m=2 Hence, there are precisely

DQ’m _ DQ’m—Q — (d2 o 1) . d2m—2 (217)

elements of order D™ in R.

Now, let 8 = [14++/d]. Then fP" = [1]. However, by the above argument, we know that
B £ [1]. So the order of 3 is D™. Therefore Zpm is a subgroup of G, and G = Zpm X Ga,
where (1 +vd) = Zpm and |Gy| = D™.

Suppose Go = Zpsy X -+ X Lpsy,, where s1+---+s, =m. If h > 2, then 1 <s; <m—1
for j = 1,--- , h. Hence, there are precisely (D —1)-D?*™~! elements of order D™ in R, which
contradicts the above result (2.17). If h = 1, then Go = Zpm and hence G = Zpm X Zpm.
Thus the number of elements in R of order D™ is (d? — 1) - d*™~2, which is the same as
(2.17). Hence, we conclude that h = 1 and Gy = Zpm. Therefore, if n = 2m+1 with m > 1,
then U(R) & K X Zpm X Zpm.

Finally, we determine the structure of the subgroup K for each case. Recall that |K| =
D—1 Ifd=—7 then |K| = 6 = 2x 3, we have K & Zy x Zy = Zp_,. If d = —11,
then |K| = 10 = 2 x 5, thus K 2 Zy x Zs = Zp_,. If d = —19, then |K| = 18 = 2 x 32,
and by the similar argument to (3) above, the element [4] € R is of order 3% x 19™. So
K = Zx Ty 2 Zp_y. Ifd=—43, then |K| = 42 = 6 x 7, so K = Zg x Z; = Zp_;.
If d = —67, then |K| = 66 = 6 x 11, thus K = Zg x Zy, = Zp_,. If d = —163, then
|K| = 162 = 2 x 3% and by the similar argument to (3) above, the element [4] € R is
of order 3* x 163™. So K = Zy X Z3s = Zp_;. Hence K = Zp_; for each case. Thus
U(R) 2 Zp_1 X Zpm X Zpm, as desired.

(b) Suppose d = —3. Let a = [a+by/—3] € R, where 31 a. Then |[U(R)| =2 x 3*™. So
U(R) = Zy x G, where |G| = 3>™. Applying the similar argument of above (a) for the case
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d # —3, we get that a”” = [1] if and only if @ € Zsm and b € {0,1,--- ,3™ — 1}, if and only
ifa € G.

Now, substituting X = 3™~! into congruence (2.16). We obtain that congruence (2.16)
holds if and only if 2a%b — (3™~ — 1)(3™~1 — 2)b% = 0 (mod 3). We can verify that the last
congruence holds for any integers b.

On the other hand, congruence (2.15) holds if and only if

377171 3771—1

2a -3"(3™ - 1)a®  ~*p* = 2 (mod 3™ 1), (2.18)
Clearly, the above congruence (2.18) does not hold, if a = b = 1. So (1++/=3)%" = [1], but
(1++v/=3)3""" #[1]. Hence, 8 = [14+v/—=3] € G is of order 3™. Then G & Zsn x E, where
(14 vV=3) = Zym, |E| = 3™.

Furthermore, if we substitute a = 2, b = 3 into above congruence (2.18), we have

28" —1= 0 (mod 3™). (219
However,
21— (3o
_ 33m_1 B (3""1_1)33"1_171 4o (3m2_1) % 32 4+ (3T”,1—1) X3—2

= 3™ —2 (mod 3™1).

Therefore, congruence (2.19) does not hold for m > 1. Hence, if we let v = [2 + 3/=3],
then by the above argument, we have 4> = [1], but A3 # [1]. Thus, v is of order 3™. Tt
leads to v € G. Moreover, (1 ++/=3)3 € Z for t > 1, (1 +/=3)° = 2 + y/—3, where 3{y
and 31 5. So we get that v ¢ (1 4+ +/—3), which implies that v € E. Recall that |E| = 3™,
therefore we have E & (2 + 3y/—3) & Zgm.

Hence, if d = —3, then U(R) = Zy X Zzm X Z3m, as desired.

Theorem 2.7 Let p € Z be an odd prime satisfying the Legendre symbol (£;) = —1.
Let R = Ryq/(p"), n > 1. Then U(R) X Zy2_1 X Zyn—1 X Lypn-1.

Proof For a = [a+bVd] € Ry/(p™), where 0 < a,b < p™ — 1, it is easy to prove that
a is a unit of R if and only if pt (a® — db?). So |U(R)| = (p* — 1)p*"~2.

If n = 1, as p is prime in R, then R;/{p) is a field with p? elements. Therefore
U(R) X Zy2—;.

If n > 2, then U(R) = G| x G, where G; and G, are finite groups, and |G;| = p* — 1,

|G| = p*™~2. First, we prove that Gy = Z,2_;. Clearly, there is an epimorphism of rings

¢: Rq/(p") — Ra/(p)-

So there exists an epimorphism of groups

¢ :U(Ra/(p")) — U(Ra/(p))-
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That is ¢ : U(R) — Zy2_;. Clearly, the kernel ker(y) of ¢ is G. If Z,2_1 = (1)), then there
exists § € U(R) such that ¢(0) = 1. Suppose the order of § € U(R) is t, then () = 1. Since
the order of ) € Z,>_; is p? — 1, we have (07" ~1) = n?°~1 = 1. Therefore, p(6") = (67" ~1),
i.e., nt =n?°~1 = 1. Thus we easily find that (p? — 1)|¢, that is (p> — 1) |0(6). Recall that
ker(¢) = G, and ¢(0) = n # 1, so 0 & ker(p) = Go. Thus 0 € Gy, and o(0) | (p* — 1).
Therefore, o(f) = p* — 1. So we may conclude that G; 2 Z,2_;.

In the following, we investigate the structure of Gy. For a = [a + bV/d] € Go. Tt is
obvious that either p{ a or ptb. Consider the polynomial expansions of o, where N > 1 is

an arbitrary odd integer. It is evident that o = [1] if and only if the following congruences
hold

aV+d(¥)a 24 d (A1) ab¥ ' =1 (mod p*), (2.20)
N—-1

(M) a" o +d(N)aV 03 + - +d7z b = 0 (mod p™). (2.21)

By the similar argument to Theorem 2.6 (3), we know that o?" =1 for all a € G5, and

n—4 elements v € Gy satisfying ’y”w2 = [1].

there are precisely p

Moreover, let 3 = [c + ev/d] € Gy with p{ ¢ and p || e. By the polynomial expansions
of 87"7", we know that 87"~ # 1, which implies o(B) = p"~'. So Gy =& H x P, where
H=(8) = Zpn s and |P| = p.

Suppose Gy = Zyn—1 X Lipny X -+ X Lphr, where hy +---+h, =n —1. If r > 2, then

1< hi<n—2fori=1---,r. Thus there are p"~2p ...p" = p?>"=3 clements v € Gy

satisfying 47" = [1], which contradicts the above result. If r = 1, then G5 = Zjn—1 X Zpn—1.
n—2

So there are exactly p"~2p"~2 = p*~* elements v € G5 satisfying v*° ~ = [1], which is the

same as above result. So we derive that 7 = 1 and this leads to G = Z,n-1 X Z,n-1. This
completes the proof.

Theorem 2.8 Let q € Z be a prime satisfying the Legendre symbol (<) = 1. Suppose
that 7 is a proper factor of q. Let R = Ry/(7"), n > 1.

(1) Suppose ¢ =2. Then U(R) = Z, ifn=1,U(R) = Zyif n =2, U(R) = Zy X Zgn—
if n > 2.

(2) Suppose q # 2. Then U(R) X Zgn-1 X Zg_1.

Proof Applying Theorem 2.1 (4), we derive that R =2 Z/{¢"). So the theorem follows.

We obtain from the proof of Theorem 1.2 that 2 is not a prime in Ry if d = —7. So we
may assume d # —7 in the following theorems. We investigate the unit groups of Ry/(2")
for d = -3, —11, —19, —43, —67, —163.

Theorem 2.9 Suppose d = —3, —11,—19, —43, —67, —163. Let R = Ry/(2"), n > 2.
Then

(1) U(R) = R, U Ry U R3, where
R, = {[rl +rv/d]: 0 <,y 2" 1 — 1, 11,75 € Z are not of the same parity},
Ry = {[rl —roVd]: 0<r <277 =1, 1 <7y 2" 1,7y € Z are not of the same parity} ,
Ry={[3+£2Vd]: 1< <2" =1, 1, €Z, 2{r;, i=1,2}.

(2) Suppose n > 4. Then there are exactly 8 elements o € R; U R, satisfying a? = [1].
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(3) Suppose n > 5. Then there are exactly 32 elements a € R; U R, satisfying a* = [1].

Proof (1) If a = [r; +75Vd] € R, where 1,75 € Z, it is easy to show that a € U(R)
if and only if 21 N(a), i.e., 21 (r? — dr3), if and only if r; and 7, are not of the same parity.

If a=[3+ %2\/&] € R, where 1,75 € Z with 2 { riry, then a € U(R) if and only if
24 N(w), ie., 24 3(rf —dr3), if and only if 8% (r} — dr3). Let r; = 2k; + 1, i = 1,2. Then

r2 —dr? = 4(k? + k1 — dk2 — dks) + (1 — d).

Clearly, 2| (k? + ki — dk3 — dky). However, 4 || (1 —d) for d = —3,—11,—19, —43, —67, —163.
Therefore, 8 1 (r? — dr2). Hence, a € U(R).

(2) First, let « = a € Z, where 1 < a < 2"7! — 1. Then a € U(R) if and only if 2 { a.
By Corollary 2.5, a? = [1] if and only if a®> = 1 (mod 2"). The last congruence has precisely
2 solutions.

Second, let v = +bv/d, where 1 < b < 2! —1. Then a € U(R) if and only if 21 b. Let
b = 2k + 1. By Corollary 2.5, o® = [1] if and only if d(4k? + 4k + 1) = 1 (mod 2"). Since
d—1= —4z, where x = 1,3,5,11,17,41, we obtain that d(4k*+4k+1)—1 = 4(k*d+kd—z).
Note that 2 1 (k?d+kd —z), we derive that d(4k*+4k+1) # 1 (mod 2"). Therefore a? # [1].

Thirdly, let « = a + bV/d, where 1 < a,b < 2" ' —1, a,b € Z are not of the same parity.
By Corollary 2.5, a? = [1] if and only if the following congruences hold

a®+b*d =2"""k +1, (2.22)
2ab = 2" 'k,, (2.23)

where ky and ko are of the same parity. If 2 { a while 2|b, then (2.23) reduces to b =
0 (mod 2"72). Recall that 1 < b < 2"~! — 1, so the last congruence has exactly one solution
b =2""2. Hence, the left hand of (2.23) is 2ab = 2" 'a with 2 { a. The left hand of (2.22) is
a’? +b%d = a® + 22" "*d = a® + 2" x 2"73d. Because n > 4, so 23 is even. Then equality
(2.22) holds for some odd integers k; if and only if a? = 2"~k 4 1 for some odd integers k,
if and only if a = 2”72 £ 1. So we can conclude that in the case of 2 { a and 2| b, there are
exactly 2 elements « satisfying o? = [1].

On the other hand, suppose that 2 | a while 2 { b. Then (2.23) reduces to a = 0 (mod 2"~2).
Recall that 1 < a < 2"7! — 1, so the last congruence has exactly one solution a = 2772,
Hence, the left hand of (2.23) is 2ab = 2"~ 1b with 2 { b. The left hand of (2.22) is a® + b*d =
22044 p?d = 2n~1 x 2" =3+ h2d. So equality (2.22) holds for some odd integers k; if and only if
b*d = 2" 'h+1 for some odd integers h. Putting b = 2s+1, then b*d—1 = 4d(s*+s)+(d—1).
Because s? + s is even and 4 || (d — 1) for d = —3, —11, —19, —43, —67, —163, we obtain that
4 || (b*d —1). Therefore, for n > 4, b*d # 2" 'h + 1 for any integers h. So we can conclude
that in the case of 2|a and 21 b, there does not exist any element « satisfying o? = [1].

Finally, let & = a — bv/d, where 1 <a < 2" 1 —1,1<b< 2" !, a,b € Z are not of the
same parity. If 21 a while 2|b, then (2.23) reduces to b = 0 (mod 2"~2). Thus b = 2""2 or
27=1. In the case of b = 2"72, applying the similar argument of above, we get that o® = [1] if
and only if a = 2”72 4 1. For the other case b = 2”1, equality (2.23) reduces to 2ab = 2"a,
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and the left hand of equality (2.22) is a® + b%d = a? + 22"~2d. By Corollary 2.5, o = [1] if
and only if a®> = 1 (mod 2"), if and only if a = 1,271 — 1. Therefore, there are exactly 4
elements « satisfying o = [1], if 24 a and 2|b.

On the other hand, if 2| a while 2 t b, by the similar above argument, we obtain that
a? # [1].

Thus, there are exactly 8 elements o € Ry U Ry satisfying o = [1], as desired.

(3) Firstly, let « = a € Z, where 1 < a < 2" ! — 1 with 21 a, a € Z. By Corollary 2.5,
ot = [1] if and only if a* =1 (mod 2"). The last congruence has precisely 4 solutions.

Secondly, let o = +bv/d, where 1 <b < 2" ' — 1 with 21b, b € Z. Let b = 2k + 1. By
Corollary 2.5, a* = [1] if and only if b*d*> — 1 = 0 (mod 2"), i.e.,

8d*(2k* + 4k + 3k* + k) + (d* — 1) = 0 (mod 2). (2.24)

It is evident that 24 { (d®>—1) for d = —3, 11,19, —43, —67, —163. So b*d?>—1 # 0 (mod 2")
for n > 5. Thus, o' # [1].

Thirdly, let & = a + bv/d, where 1 < a,b < 2" ' —1, a and b are not of the same parity.
By Corollary 2.5, a* = [1] if and only if the following congruences hold

a* 4+ b*(6a*d + b?d*) = 2"k + 1, (2.25)
4b(a® + ab?d) = 2" ks, (2.26)

where ki and ko are of the same parity. If 2 t a while 2|b, then (2.26) reduces to b =
0 (mod 2"73). The last congruence has exactly three solutions b = 2" 3z, where x = 1,2, 3.
Suppose first that b = 2" 3z, x = 1,3. Then the left hand of equation (2.26) equals
4b(a® + ab®d) = 2" 'ky, where ky = x(a® + ab*d) is odd.

On the other hand, the left hand of equation (2.25) equals a* + 2"71(3 x 2"~*a?d +
231 q222)22. Since n > 5, we get that (3 x 2"~ %a?d + 23"~11d%2?)2? is even. Therefore,
a* = [1] if and only if a* = 2""!s + 1 for some odd integers s. Since 1 < a < 271 — 1,
clearly there are exactly 4 elements a satisfying a* = 2"71s 4+ 1 for some odd integers
s. Now suppose b = 2" 3z, where z = 2. Then the left hand of equation (2.26) equals
4b(a® + ab*d) = 2™(a® + ab?*d). Therefore, by equation (2.25), we obtain that a* = [1] if and
only if a* =1 (mod 2"). The last congruence has exactly 4 solutions a € {1,---,2"71 — 1}.
Hence, there are totally 12 elements « satisfying o* = [1], in the case of 2 { a and 2|b.
For another case of 2|a and 2 { b, we reduce from equation (2.25) that 2”73 |a. Hence,
a = 2" 3y, where y = 1,2,3. Suppose a = 2" 3y, where y = 1,3. Then by equations
(2.25) and (2.26), a* = [1] if and only if b*d*> = 2"7's + 1 for some odd integers s. Let
b= 2k+1, then b*d? — 1 is equal to the left side of congruence (2.24). Since 2* { (d? — 1) for
d=—3,-11,-19, —43,—67,—163. So b*d?> — 1 % 0 (mod 2"~1) for n > 5. Thus, a* # [1].
Next, we assume that a = 2"~ 3y, where y = 2. Then by equations (2.25) and (2.26), a* = [1]
if and only if b*d®> = 1 (mod 2"), if and only if congruence (2.24) holds for any integers k

and n. However, this congruence does not hold for n > 5. Therefore, we can conclude that
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in the case of 2| a and 2 { b, there does not exist any element « satisfying a* = [1]. Hence,
there are totally 12 elements a = [a + bv/d] € R; satisfying a* = [1], where a # 0 and b # 0.

Finally, let & = a — bV/d, where 1 < a < 2" 1 —1,1 < b < 2" ', @ and b are not
of the same parity. If 2 { a while 2|b, then (2.26) reduces to b = 0 (mod 2"~3). The last
congruence has exactly four solutions, namely b = 2" 3z, where x = 1,2,3,4. Applying
the similar argument above, we obtain that there are exactly 16 elements o € R, satisfying
a* = [1], where a # 0. On the other hand, if 2| a and 2 1 b, there does not exist any element
a € Ry satisfying o* = [1].

Thus, there are exactly 32 elements o € Ry U Ry satisfying o = [1], as desired.

In the sequel, we assume that 2 is prime in the ring Ry. If n = 1, by Theorem 2.1 (5)
and Theorem 2.9, Ry/(2) is a field with 4 elements. Therefore, U(Ry/(2")) = Zs.

If n =2, then |U(Ry;/(2"))| = 3 x 22. The unit group of Ry/(2") is
{1i\f1—2f if—if if if}

By calculation, we obtain that for d = —3, —11, —19, —43, —67, —163, (=V/d)? = 4k + 1 for
some integers k. So by Corollary 2.5, £v/d is of order 2. Similarly, (£ £ 3/d)? = —27 = [1].
So the order of & + 2+/d is 3. Moreover, we show that o(1 — 2V/d) = 2, o(3 £ %\/&) =
o(4 + 3[)_0( 1[)_6 Hence, U(Rqy/(22)) & Zs x Lo X Zo.
Analogously, if n = 3, then |U(Ry/(2"))| = 3 x 2. The unit group of R;/(2") is

{1, 3, £Vd, £3Vd, 1+2Vd, 2+Vd, 2+3Vd, 3+2Vd, 1 —4V4d, 3—4\@}
b
U {;iQ\/&; a,b:1,3,5,7}.

By calculation, we obtain that o(3) = 0(14£2v/d) = 0(34£2Vd) = o(1—4/d) = 0(3—4+/d) = 2,
and o(+£Vd) = o(£3Vd) = 0o(2+Vd) = 0(2+3Vd) = o(2—V/d) = 0(2—3V/d) = 4. Moreover,
o(% £ 2vd) # 2,4 for a,b=1,3,5,7. Therefore, U(Ry/(2%)) & Zs X Loz X Ly X Lo.

Theorem 2.10 Suppose that d = —3, —11, —19, —43, —67 or —163. Then

(1) U(Ra/(2)) = Zs,

(2) U(Rq/(2™)) & Z3 X Lign—1 X Lgn—2 X Lo for n > 2.

Proof The unit groups for the cases of n = 1,2,3 have been stated above. So we
assume n > 4 in the following. By Theorem 2.9, we get |[U(R,;/(2"))| = 3 x 22"~2. Thus
U(Ry/(2")) = Z3 x H, where H is a subgroup with order 2272,

Firstly, we claim that ' = [1] for « € R; U Ry, where R; and R, are stated in
Theorem 2.9. Indeed, if we put o = a + bv/d € Ry, a™ = A+ BVd, M is even, then

A=a™ +d(M)a™2? + d? (M) a™M*p* + (M) a2V 4 dH

B=(Y)a"o+d(Y)aM 5 + T (WM5) @M d T (WM) abM

Let M = 2"~'. If 2 { @ while 2|b, then 2" | (2" )b* for 1 < s < 2"7'. So we derive
2" (A—a*"") and 2" | B. Hence, A = 2"t + a*" ' and B = 2"k for some integers t, k. By



No. 4 On the unit groups of the quotient rings of imaginary quadratic number rings 617

Corollary 2.5, a2 " = [1] if and only if a®" " = 1 (mod 2"). Because U(Z/(2")) & Zy X Zign—»
for n > 3, we derive that 2" = 1 (mod 2") for 24 a and n > 3. Thus 2" = [1] in the
case of 21 a and 2|b.

On the other hand, suppose 2|a while 2 1 b. Since 2™ | (2";1 ) a2 7 for 0 < s <

on=1 _ 1, it is obvious that 27| (A — d¥" 2" ') and 2" | B. Since d,b € U(Z/(2")), we

must have 2"~ = 1 (mod 2") and b*" ' = 1 (mod 2"). Hence, d2" 52" = 1 (mod 2").
Therefore, "' = [1] in the case of 2|a and 2 { b. So we conclude that o®" ' = [1] for
2n~t

a € R;. Similarly, we have a [1] for a € Ry. Thus, our claim follows.

Secondly, we prove that Zy»-1 is a subgroup of H. Since the number of the set R; U R,
is precisely 22"~2 and note that the subgroup H is of order 22"~2, we can conclude that
a € H if and only if « € Ry U Ry. So H = R, U Ry. Furthermore, let ag = [2 + \/&] c H.
We prove that a2"~ # [1]. Setting a = 2,b = 1, M = 2"~2. Substituting these values into
the expressions for A and B. Since 2"| (2"”)a® for 3 < s <2772, and 2" || (2" *) a® for
s = 1,2, we derive that 2771 || (A —d2" ") and 2" || B. So A = 2" 'k + d2" " for some
odd integers k. Moreover, owing to Corollary 2.5, aon_2 = [1] if and only if A =2""'¢+1 for
some odd integers ¢, i.e., A = 2" k+d?" " = 27"t 41, if and only if d2"° = 2" 1 (t—k)+1.
Since 2 { kt, we have ¢ — k is even. Therefore, 2"~ = [1] if and only if d2"° =1 (mod 2").
In the following, we show that 2"’ # 1 (mod 2") for d = -3, —11, —19, —43, —67 or —163.

Indeed, we have —d = 4e — 1 for some odd integers e. Then

P 1= (de— 1) — 1= () = (27°) (de)? T e (27 (4e)? — (27 de.

It is evident that 2" | (2"—3) (4e)® for 2 < s < 2"7%. However, (2'")4e = 2" 'e is not
divisible by 2". Thus d2"° # 1 (mod 2”) Hence a2
order 2", Therefore, Zsn-1 is a subgroup of H, as desired.
Now, owing to Theorem 2.9 (2), we obtain that H = Zgn-1 X Zai X Zg;, where i,j > 1
andi—i—j =n—1. Ifn =4, then i+ j = 3. Hence, H = Zgyn—1 X Zo2 X Zg for the case
= 4. Next, we assume that n > 4. If 7,5 > 2, then there are precisely 64 elements
« € Zgn-1 X Loy X Ly; satisfying o* = [1], which contradicts Theorem 2.9 (3). If i =n — 2

# [1], which implies that «q is of

and j = 1, then there are precisely 32 elements « € Zon—1 X Zgn—2 X Zs satisfying o* = [1],
which is the same as Theorem 2.9 (3). Therefore, we conclude that H = Zgn-1 X Zgn-2 X Zy.

This completes the proof of the theorem.
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