
Vol. 38 ( 2018 )
No. 4

数 学 杂 志
J. of Math. (PRC)

ON THE UNIT GROUPS OF THE QUOTIENT RINGS

OF IMAGINARY QUADRATIC NUMBER RINGS

WEI Yang-jiang, SU Lei-lei, TANG Gao-hua
(School of Mathematics and Statistics, Guangxi Teachers Education University,

Nanning 530023, China)

Abstract: In this paper, we investigate the unit groups of the quotient rings of the inte-

ger rings Rd of the quadratic fields Q(
√

d) over the rational number field Q. By employing the

polynomial expansions and the theory of finite groups, we completely determine the unit groups of

Rd/〈ϑn〉 for d = −3, −7, −11, −19, −43, −67, −163, where ϑ is a prime in Rd, and n is an arbitrary

positive integer. The results in this paper generalize the study of the unit groups of Rd/〈ϑn〉 for

d = −1, which obtained by J. T. Cross (1983), G. H. Tang and H. D. Su (2010) and for the case

d = −2 by Y. J. Wei (2016).
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1 Introduction

Let K = Q(
√

d), the quadratic field over Q, where Q is the rational number field and d

is a square-free integer other than 0 and 1. The ring of algebraic integers of K is denoted
by Rd, and it is very important for the study of dynamical systems, e.g., see [1, 2]. We
call Rd an imaginary quadratic number ring if d < 0. From the work of Stark [3], we know
that there are only finite negative integers d such that the complex quadratic ring Rd is a
unique-factorization domain, namely, d = −1,−2,−3,−7,−11,−19,−43,−67,−163. For an
arbitrary prime element ϑ ∈ Rd, and a positive integer n, the unit groups of Rd/〈ϑn〉 were
determined for the cases d = −1,−2,−3 in [4–6], respectively. Moreover, the square mapping
graphs for the Gaussian integer ring modulo n is studied in paper [7]. In this paper, we
investigate the unit groups of Rd/〈ϑn〉 for the cases d = −3,−7,−11,−19,−43,−67,−163,
and we make some corrections to the case of d = −3 in paper [6].

Throughout this paper, we denote by Z the set of rational integers, Zn is the additive
cyclic group of order n, Z/〈n〉 is the ring of integers modulo n, and o(θ) is the order of θ in
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a group. For a given ring R, let U(R) denote the unit group of R, let 〈γ〉 denote the ideal of
R generated by γ ∈ R. If γ is an element of a given group G, we also use 〈γ〉 to denote the
subgroup of G generated by γ ∈ G. The Legendre symbol (a

p
), where a is an integer, p is a

prime and p - a, is defined as follows: if there exists an integer x such that x2 ≡ a (mod p),
then (a

p
) = 1, otherwise, (a

p
) = −1.

Lemma 1.1 [8, Lemma 2.4.2] The ring Rd of algebraic integers of K = Q(
√

d) is

(1) Rd = {a + b
√

d : a, b ∈ Z}, if d ≡ 2, 3 (mod 4).

(2) Rd = { 1
2
(a + b

√
d) : a, b ∈ Z are of the same parity}, if d ≡ 1 (mod 4).

By Lemma 1.1, for d = −3,−7,−11,−19,−43,−67,−163, the elements of Rd are all
of the form 1

2
(a + b

√
d), where a, b ∈ Z are of the same parity. Moreover, we know that

U(Rd) = {±1} for all d = −3,−7,−11,−19,−43,−67,−163.

Now, we need to identify all primes in the ring Rd. The following theorem is obtained
from [9, Theorem 9.29].

Theorem 1.2 For d = −3,−7,−11,−19,−43,−67,−163, up to multiplication by units,
the primes of Rd are the following three types (D = −d):

(1) p, where p ∈ Z is a prime satisfying the Legendre symbol ( p
D

) = −1;

(2) π or π, where q = ππ ∈ Z is a prime satisfying the Legendre symbol ( q
D

) = 1;

(3) δ =
√

d.

2 Main Results

Throughout this section, d = −3,−7,−11,−19,−43,−67,−163. For conveniences, we
denote by D = −d. Let n be a positive integer, and ϑ is a prime in Rd. We determine the
structure of unit groups of Rd/〈ϑn〉.

First, we characterize the equivalence classes of Rd/〈ϑn〉, where ϑ is prime in Rd. For α ∈
Rd, we denote by [α] ∈ Rd/〈ϑn〉 the equivalence class which α belongs to. Simultaneously,
we make corrections to the equivalence classes which are given in [6, Theorem 3.2] for the
case d = −3.

Theorem 2.3 Let ϑ denote a prime of Rd, δ =
√

d, D = −d. For an arbitrary positive
integer n, the equivalence classes of Rd/〈ϑn〉 are of the following types:

(1) Rd/〈δ2m〉 =
{
[r1 + r2

√
d ] : 0 6 ri 6 Dm − 1, ri ∈ Z, i = 1, 2

}
, m > 1;

(2) Rd/〈δ2m+1〉 =
{
[r1 + r2

√
d ] : 0 6 r1 6 Dm+1 − 1, 0 6 r2 6 Dm − 1, r1, r2 ∈ Z

}
, m >

0;

(3) Rd/〈pn〉 =
{
[r1 + r2

√
d ] : 0 6 ri 6 pn − 1, ri ∈ Z, i = 1, 2

}
, where p is an odd prime

in Z satisfying the Legendre symbol ( p
D

) = −1;

(4) Rd/〈πn〉 = {[a] : 0 6 a 6 qn − 1, a ∈ Z}, where q = ππ is a prime in Z satisfying
the Legendre symbol ( q

D
) = 1;

(5) Suppose that d 6= −7. Then

(a) Rd/〈2〉 =
{
[0], [1], [ 1

2
+ 1

2

√
d ], [ 1

2
− 1

2

√
d ]

}
;
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(b) For n > 2, Rd/〈2n〉 = R1 ∪R2 ∪R3, where

R1 =
{

[r1 + r2

√
d ] : 0 6 ri 6 2n−1 − 1, ri ∈ Z, i = 1, 2

}
,

R2 =
{

[r1 − r2

√
d ] : 0 6 r1 6 2n−1 − 1, 1 6 r2 6 2n−1, r1, r2 ∈ Z

}
,

R3 =
{

[
r1

2
± r2

2

√
d ] : 1 6 ri 6 2n − 1, ri ∈ Z, 2 - ri, i = 1, 2

}
.

Proof (1) As δ2m = dm, we get that 〈δ2m〉 = 〈Dm〉. Suppose α = a1 + a2

√
d ∈ Rd,

where a1, a2 ∈ Z. Let ai = Dmki + ri with 0 6 ri 6 Dm − 1, ki ∈ Z, i = 1, 2. Then
α = (r1 + r2

√
d)+Dm(k1 + k2

√
d). So α and r1 + r2

√
d belong to the same equivalence class

of Rd/〈δ2m〉.
On the other hand, let β = 1

2
(b1 + b2

√
d) ∈ Rd, where b1 and b2 are odd integers.

Since D is odd for i = 1, 2, there exists a unique integer gi ∈ {0, 1, · · · , Dm − 1} satisfying
the congruence 2gi ≡ bi (mod Dm). Hence, there exists an odd integer xi such that bi =
Dmxi + 2gi, i = 1, 2. Therefore, γ = x1

2
+ x2

2

√
d ∈ Rd, and β = (g1 + g2

√
d) + Dmγ, which

implies that β and g1 + g2

√
d belong to the same equivalence class of Rd/〈δ2m〉. Finally, it

is easy to verify that the classes of (1) are distinct.
(2) As δ2m+1 = dmδ, we get that 〈δ2m+1〉 = 〈Dm

√
d 〉. Suppose α = a1 + a2

√
d ∈ Rd,

where a1, a2 ∈ Z. Let a1 = Dm+1k1 + r1 with 0 6 r1 6 Dm+1 − 1. Let a2 = Dmk2 + r2 with
0 6 r2 6 Dm − 1. Then α = (r1 + r2

√
d) + Dm

√
d(k2 − k1

√
d). So α and r1 + r2

√
d belong

to the same equivalence class of Rd/〈δ2m+1〉.
On the other hand, let β = 1

2
(b1 + b2

√
d) ∈ Rd, where b1 and b2 are odd integers.

Since D is odd, there exists a unique integer g1 ∈ {0, 1, · · · , Dm+1−1} satisfying congruence
2g1 ≡ b1 (mod Dm+1). Analogously, there exists a unique integer g2 ∈ {0, 1, · · · , Dm − 1}
satisfying congruence 2g2 ≡ b2 (mod Dm). Therefore, there exist odd integers x1, x2 such
that b1 = Dm+1x1 + 2g1, and b2 = Dmx2 + 2g2. Hence, γ = x2

2
− x1

2

√
d ∈ Rd, and

β = (g1 + g2

√
d) + Dm

√
d(x2

2
− x1

2

√
d), which implies that β and g1 + g2

√
d belong to the

same equivalence class of Rd/〈δ2m+1〉.
Finally, it is easy to verify that the classes of (2) are distinct.
(3) It can be proved with the similar method to (1). Suppose α = a1 + a2

√
d ∈ Rd,

where a1, a2 ∈ Z. Let ai = pnki + ri with 0 6 ri 6 pn − 1, ki ∈ Z, i = 1, 2. Then
α = (r1 + r2

√
d) + pn(k1 + k2

√
d). So α and r1 + r2

√
d belong to the same equivalence class

of Rd/〈pn〉.
On the other hand, let β = 1

2
(b1 + b2

√
d) ∈ Rd, where b1 and b2 are odd integers.

Since p is odd for i = 1, 2, there exists a unique integer gi ∈ {0, 1, · · · , pn − 1} satisfying the
congruence 2gi ≡ bi (mod pn). Hence, there exists an odd integer xi such that bi = pnxi+2gi,
i = 1, 2. Therefore, γ = x1

2
+ x2

2

√
d ∈ Rd, and β = (g1 + g2

√
d) + pnγ, which implies that β

and g1 + g2

√
d belong to the same equivalence class of Rd/〈pn〉. Finally, it is easy to verify

that the classes of (3) are distinct.
(4) Let q = ππ be a prime in Z satisfying the Legendre symbol ( q

D
) = 1. Let πn =

1
2
(s + t

√
d), where s, t ∈ Z are of the same parity. Then it is clear that q - st. Suppose that
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β = 1
2
(b1+b2

√
d) ∈ Rd, where b1, b2 ∈ Z are of the same parity. We show that in the quotient

ring Rd/〈πn〉, β belongs to the equivalence class [a] for some a ∈ {0, 1, · · · , qn − 1}. Indeed,
Let γ = 1

2
(x + y

√
d) ∈ Rd, where x, y ∈ Z are of the same parity, such that β = a + πnγ.

Then the following equations hold

a +
1
4

xs +
1
4

dyt =
1
2

b1, (2.1)

1
4

ys +
1
4

xt =
1
2

b2. (2.2)

Now we solve the integer a from the above equations. By equation (2.1), we obtain

4as + xs2 + dyts = 2b1s. (2.3)

And by equation (2.2), we get−dyts−dt2x = −2b2dt. Eliminating dyts between this equation
and (2.3), we obtain

4as + x(s2 − dt2) = 2(b1s− db2t). (2.4)

Note that q = ππ and πn = 1
2
(s+ t

√
d), we have s2−dt2 = 4qn. Substituting this into (2.4),

it follows that
4as + 4qnx = 2(b1s− db2t). (2.5)

Moreover, since s, t ∈ Z are of the same parity and b1, b2 ∈ Z are of the same parity and
note that d is odd, we derive b1s − db2t is even. Hence, equation (2.5) can be written as
as + qnx = 1

2
(b1s− db2t), which implies that

as ≡ 1
2

(b1s− db2t) (mod qn). (2.6)

Because q - s, the last congruence (2.6) in a has a unique solution a ∈ {0, 1, · · · , qn − 1}.
Therefore, β belongs to the equivalence class [a], as desired.

Finally, it is easy to verify that the classes of (4) are distinct.
(5) Suppose d 6= −7.
(a) We first determine the structure of the quotient ring Rd/〈2〉. Suppose α1 = a ∈ Z.

If a is even, then a
2
∈ Rd. It follows from α1 = 0+2× a

2
that α1 belongs to the equivalence

class [0] in the quotient ring Rd/〈2〉. If a is odd, then a = 1 + 2k for some k ∈ Z. Then
clearly α1 belongs to the equivalence class [1].

Suppose α2 = b
√

d, where b ∈ Z. If b is even, then b
2

√
d ∈ Rd. We have

α2 = b
√

d = 0 + 2× b

2

√
d.

So clearly α2 belongs to the equivalence class [0]. If b is odd, then

α2 = b
√

d = 1 + 2(− 1
2

+
b

2

√
d).

Therefore, α2 belongs to the equivalence class [1].
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Suppose α3 = s + t
√

d ∈ Rd, where s, t ∈ Z. If s and t are of the same parity, then
s
2

+ t
2

√
d ∈ Rd. Moreover, we have s + t

√
d = 0 + 2( s

2
+ t

2

√
d). Hence, α3 belongs to the

equivalence class [0]. If s and t are not of the same parity, then s−1
2

+ t
2

√
d ∈ Rd. Since

s + t
√

d = 1 + 2( s−1
2

+ t
2

√
d), we obtain that α3 belongs to the equivalence class [1].

Now, suppose α4 = x
2

+ y
2

√
d, where x = 2k1+1, y = 2k2+1, k1, k2 ∈ Z. If k1 and k2 are

of the same parity, then k1
2

+ k2
2

√
d ∈ Rd. Moreover, since α4 = ( 1

2
+ 1

2

√
d) + 2(k1

2
+ k2

2

√
d),

we obtain that α4 belongs to the equivalence class [ 1
2

+ 1
2

√
d ]. If k1 and k2 are not of the

same parity, then k1
2

+ k2+1
2

√
d ∈ Rd. Furthermore, α4 = ( 1

2
− 1

2

√
d) + 2(k1

2
+ k2+1

2

√
d).

Thus, α4 belongs to the equivalence class [ 1
2
− 1

2

√
d ].

Finally, we show that the classes of (5) (a) are distinct. Clearly

[0] 6= [1] 6= [
1
2
± 1

2

√
d ] 6= [0].

If [ 1
2

+ 1
2

√
d ] = [ 1

2
− 1

2

√
d ], then there exits γ = x1

2
+ x2

2

√
d ∈ Rd, where x1, x2 ∈ Z are of

the same parity, such that
1
2

+
1
2

√
d = (

1
2
− 1

2

√
d) + 2(

x1

2
+

x2

2

√
d).

Clearly, the above equation holds if and only if x1 = 0 and x2 = 1, which is impossible, since
x1, x2 ∈ Z must be of the same parity. Hence, we conclude that [ 1

2
+ 1

2

√
d ] 6= [ 1

2
− 1

2

√
d ].

Therefore, the classes of (5) (a) are distinct.
(b) Now, let n > 2. We determine the structure of the quotient ring Rd/〈2n〉. Suppose

β1 = a1+a2

√
d ∈ Rd, where a1, a2 ∈ Z. Let ai = 2n−1ki+ri, ki, ri ∈ Z, and 0 6 ri 6 2n−1−1

for i = 1, 2. First, if k1 and k2 are of the same parity, then k1
2

+ k2
2

√
d ∈ Rd. Moreover, since

β1 = (r1 + r2

√
d) + 2n(k1

2
+ k2

2

√
d), we conclude that β1 and r1 + r2

√
d belong to the same

equivalence class in the quotient ring Rd/〈2n〉. Secondly, if k1 and k2 are not of the same
parity, then k1

2
+ k2+1

2

√
d ∈ Rd. Since β1 = [r1−(2n−1−r2)

√
d ]+2n(k1

2
+ k2+1

2

√
d), we obtain

that β1 and r1 − (2n−1 − r2)
√

d belong to the same equivalence class. Furthermore, since
0 6 r2 6 2n−1 − 1, we derive that 1 6 2n−1 − r2 6 2n−1. So in the second case, i.e., k1 and
k2 are not of the same parity, we get that β1 and r1 − r ′2

√
d belong to the same equivalence

class, where 1 6 r ′2 6 2n−1 and r ′2 = 2n−1 − r2.
Next, suppose that β2 = b1

2
+ b2

2

√
d, where b1 and b2 are odd integers. Let bi = 2nki +ri,

where ki, ri ∈ Z, 1 6 ri 6 2n − 1 and 2 - ri for i = 1, 2. First, if k1 and k2 are of the same
parity, then k1

2
+ k2

2

√
d ∈ Rd. Moreover, since β2 = ( r1

2
+ r2

2

√
d) + 2n(k1

2
+ k2

2

√
d), we obtain

that β2 and r1
2

+ r2
2

√
d belong to the same equivalence class. Secondly, if k1 and k2 are not

of the same parity, then k1
2

+ k2+1
2

√
d ∈ Rd. Since β2 = ( r1

2
− 2n−r2

2

√
d) + 2n(k1

2
+ k2+1

2

√
d),

it follows that β2 and r1
2
− 2n−r2

2

√
d belong to the same equivalence class. Furthermore,

according to 1 6 r2 6 2n − 1, we have 1 6 2n − r2 6 2n − 1. So, in the second case, i.e.,
k1 and k2 are not of the same parity, we obtain that β2 and r1

2
− r ′2

2

√
d belong to the same

equivalence class, where 1 6 r ′2 6 2n − 1 and r ′2 = 2n − r2.
Finally, we claim that the classes of (5) (b) are distinct. We only show that

[
r1

2
+

r2

2

√
d ] 6= [

x1

2
− x2

2

√
d ],
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where ri, xi ∈ {1, 3, · · · , 2n−1} with 2 - rixi for i = 1, 2. Indeed, if [ r1
2

+ r2
2

√
d ] = [x1

2
− x2

2

√
d ],

then there exit t1, t2 ∈ Z of the same parity such that

r1

2
+

r2

2

√
d = (

x1

2
− x2

2

√
d) + 2n(

t1
2

+
t2
2

√
d).

So we obtain r1 = x1 + 2nt1 and r2 = −x2 + 2nt2. It is easy to show that t1 = 0 and t2 = 1,
which is a contradiction.

Example 2.4 To illustrate the case d = −19, q = 23 = π π and n = 2, let γ =
1
2
(b1 + b2

√−19) ∈ Rd, where b1 = 3 and b2 = 1. We give the equivalence class in Rd/〈π2〉
which γ belongs to. Since π = 2−√−19 is a proper factor of q in Rd, π2 = −15− 4

√−19 =
−30
2
− 8

2

√−19. Denoted by s = −30, t = −8. Substituting the values for s, t, b1, b2, d, q and
n into congruence (2.6), we get that a = 198 is a solution to congruence (2.6). Moreover,
substituting the values for a, s, t, b1, b2 and d into equations (2.1) and (2.2), we have x = 11
and y = −3. Therefore,

γ =
3
2

+
1
2
√−19 = 198 + π2(

11
2
− 3

2
√−19),

which implies that γ belongs to the class [198].
As an easy consequence of Theorem 2.1 (5), we have
Corollary 2.5 Suppose that 2 is prime in Rd. Let α = [a + b

√
d] ∈ Rd/〈2n〉, where

0 6 a, b 6 2n−1 − 1, a, b ∈ Z. Then
(1) α = [1] if and only if a = 2n−1k1 + 1, b = 2n−1k2, where k1, k2 ∈ Z are of the same

parity.
(2) If a = 2nk1 + 1, b = 2nk2, k1, k2 ∈ Z, then α = [1].
Now, we determine the structure of unit groups of Rd/〈ϑn〉 for an arbitrary prime

ϑ of Rd. First of all, we consider the case of ϑ = δ =
√

d. Let R = Rd/〈δn〉. For
α = [a + b

√
d ] ∈ R, it is easy to show that α ∈ U(R) if and only if d - (a2− db2), if and only

if d - a, if and only if D - a.
Theorem 2.6 Let R = Rd/〈(

√
d)n〉, n is an arbitrary positive integer. Let D = −d.

Then the unit groups U(R) of R are as the follows:
(1) Let n = 1. Then U(R) ∼= ZD−1.
(2) Let n = 2. Then U(R) ∼= ZD−1 × ZD.
(3) Let n = 2m with m > 2.
(a) If d 6= −3, then U(R) ∼= ZD−1 × ZDm−1 × ZDm ;
(b) If d = −3, then U(R) ∼= Z2 × Z3 × Z3m−1 × Z3m−1 .

(4) If n = 2m + 1 with m > 1, then U(R) ∼= ZD−1 × ZDm × ZDm .
Proof (1) If n = 1, by Theorem 2.1 (2), R is a field of order D = −d, so |U(R)| = D−1.

Therefore, U(R) is a cyclic group of order D − 1 and hence U(R) ∼= ZD−1.
(2) If n = 2, then |U(R)| = −d(−d− 1) = D(D− 1). Note that D is a prime, moreover

D and D − 1 are relatively prime, we get that U(R) ∼= H × ZD, where H is a subgroup of
order D− 1. Moreover, we can easily show that D− 1 is square-free for D = 3, 7, 11, 43 and
67.
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On the other hand, if D = 19, then D− 1 = 2× 32, clearly [4] ∈ U(R) is of order 32. If
D = 163, then D − 1 = 2 × 34, clearly [4] ∈ U(R) is of order 34. Therefore H ∼= ZD−1. So
U(R) ∼= ZD−1 × ZD.

(3) (a) Suppose that d 6= −3. Let n = 2m with m > 2. Let α = [a + b
√

d ] ∈ R, where
a, b ∈ {0, 1, · · · , Dm − 1}. Since α ∈ U(R) if and only if D - a, |U(R)| = (D− 1)D2m−1, and
we can write U(R) = P ×H, where P , H are finite groups, and |P | = D− 1, |H| = D2m−1.

We determine the structure of H. Let α = [a + b
√

d ] ∈ R with D - a. By Theorem 2.1
(1), for an arbitrary odd integer W > 1, αW equals to the equivalence class [1], i.e., αW = [1]
if and only if the following congruences hold

aW + d ( W
2 ) aW−2b2 + · · ·+ d

W−1
2

(
W

W−1

)
abW−1 ≡ 1 (mod Dm), (2.7)

( W
1 ) aW−1b + d ( W

3 ) aW−3b3 + · · ·+ d
W−1

2 bW ≡ 0 (mod Dm). (2.8)

First, we claim that for any α ∈ H, αDm

= [1]. Let W = Dm. Since dm | dj
(

W
2j

)
for

j > 1, the congruence (2.7) is equivalent to aDm ≡ 1 (mod Dm). It is well known that
the unit group of the ring Z/〈Dm〉 is isomorphic to ZDm−1 × ZD−1. Hence, we obtain that
aDm ≡ 1 (mod Dm) if and only if a ∈ ZDm−1 . So in the set {0, 1, · · · , Dm − 1}, there are
precisely Dm−1 elements a such that aDm ≡ 1 (mod Dm).

On the other hand, since dm | dj
(

W
2j+1

)
for j > 0, congruence (2.8) holds for any positive

integer b. Therefore, we can conclude that αW = [1] if and only if a ∈ ZDm−1 and b ∈
{0, 1, · · · , Dm − 1}. Hence, the number of α ∈ U(R) satisfying αDm

= [1] is

Dm−1 ×Dm = D2m−1.

Recall that U(R) = P ×H with |P | = D − 1 and |H| = D2m−1, we get that αDm

= [1] for
α ∈ H.

Second, we consider the number of α ∈ U(R) satisfying αDm−1
= [1]. Let W = Dm−1.

Since dm | dj
(

W
2j

)
for j > 1, congruence (2.7) holds if and only if aDm−1 ≡ 1 (mod Dm), if

and only if a ∈ ZDm−1 .
On the other hand, note that d 6= −3 and dm | dj

(
W

2j+1

)
for 1 6 j 6 W−1

2
, congruence

(2.8) is equivalent to Dm−1aDm−1−1b ≡ 0 (mod Dm). That is, Dm−1b ≡ 0 (mod Dm),
since D - a. Hence, we obtain d | b. So the solutions to congruence (2.8) are b = D · l
with l = 0, 1, · · · , Dm−1 − 1. Thus the number of α ∈ U(R) satisfying αDm−1

= [1] is
Dm−1 ×Dm−1 = D2m−2. Then the number of elements of order Dm in U(R) is

D2m−1 −D2m−2 = d 2m−2(−d− 1).

Finally, let we calculate the number of α ∈ H satisfying αDm−2 ≡ 1 (mod Dm). Let
W = Dm−2. Since dm | dj

(
W

2j+1

)
for 2 6 j 6 W−1

2
, congruence (2.8) holds if and only if

WaW−3b [6a2 + d(W − 1)(W − 2)b2 ] ≡ 0 (mod Dm). (2.9)

Since D - a and d 6= −3, we derive that D - [6a2 + d(W − 1)(W − 2)b2]. So congruence (2.9)
holds if and only if d2 | b, i.e., congruence (2.8) holds if and only if d2 | b. Furthermore, in the
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case of d2 | b, we have dm | dj
(

W
2j

)
b2j for j > 1. Hence, in the case of d2 | b congruence (2.7)

holds if and only if aW ≡ 1 (mod Dm). Clearly, the number of solutions of the last congruence
is Dm−2. Thus the number of α ∈ H such that αDm−2

= 1 is Dm−2 ×Dm−2 = d 2m−4. So
we derive that the number of elements of order Dm−1 in U(R) is

D2m−2 −D2m−4 = d 2m−4(d2 − 1). (2.10)

Now, let β = [1 +
√

d ] ∈ R. Then by the above argument, we know that β is of order
Dm. Since m > 2, clearly β ∈ H. Therefore ZDm is a subgroup of H and we can suppose
H ∼= ZDm × ZDl1 × · · · × ZDlh , where l1 + · · · + lh = m − 1. If h > 2, then 1 6 li 6 m − 2
for i = 1, · · · , h and hence there are exactly (D − 1) ·D2m−3 elements in H of order Dm−1,
which contradicts the above result (2.10). If h = 1, then H ∼= ZDm ×ZDm−1 . Therefore, the
number of elements of order Dm−1 in H is Dm−1×Dm−1−Dm−2×Dm−2 = d 2m−4(d2− 1),
which is the same as (2.10). So we can conclude that h = 1 and H ∼= ZDm × ZDm−1 .

In the following, we determine the structure of the subgroup P of U(R), where |P | =
−d − 1. Clearly, −d − 1 is square-free for d = −7,−11,−43,−67 and hence P ∼= ZD−1 in
these cases. If d = −19, then |P | = 18 = 2× 32.

On the other hand, let a < 19m be a positive integer. If a19t ≡ 1 (mod 19m) for
some integers t > 1, then clearly a = 1 + 19x for some non-negative integers x. Hence,
419t 6≡ 1 (mod 19m) and (43)19

t 6≡ 1 (mod 19m) for any t > 1. Furthermore, we have

49×19m−1
= 26214419m−1

= (19× 13797 + 1)19
m−1

= 1919m−1 × 1379719m−1
+ · · ·+ 19m−1 × 19× 13797 + 1

≡ 1 (mod 19m).

Thus, if d = −19, the class [4] ∈ R is of order 32 ·19m−1, so P ∼= Z2×Z32 ∼= Z18. Analogously,
if d = −163, we have

481×163m−1
= (481 − 1 + 1)163

m−1

= (481 − 1)163
m−1

+ 163m−1(481 − 1)163
m−1−1 + · · ·+ 163m−1(481 − 1) + 1

≡ 1 (mod 163m).

Since 163 ‖ (481 − 1), the element [4] ∈ R in the case of d = −163 is of order 34 ×
163m−1, so P ∼= Z2 × Z34 ∼= Z162. Therefore, we can conclude that P ∼= ZD−1 for
d = −7,−11,−19,−43,−67,−163. Accordingly, U(R) ∼= P ×H ∼= ZDm ×ZDm−1 ×ZD−1, as
desired.

(b) Suppose that d = −3, n = 2m, m > 1. Let α = [a + b
√

d ] ∈ U(R), where
a, b ∈ {0, 1, · · · , 3m − 1} and 3 - a. Since |U(R)| = 2× 32m−1, we can write U(R) ∼= Z2 ×Q,
where |Q| = 32m−1. We claim that α3m−1

= [1] for α ∈ Q. Let W = 3m−1. Since 3m | 3j
(

W
2j

)

for j > 1, congruence (2.7) holds if and only if a3m−1 ≡ 1 (mod 3m), if and only if a ∈ Z3m−1 .
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On the other hand, note that 3m | 3j
(

W
2j+1

)
for 2 6 j 6 W−1

2
, congruence (2.8) is

equivalent to

b

[
a2 − (3m−1 − 1)(3m−1 − 2)

2
b2

]
≡ 0 (mod 3). (2.11)

If 3 | b, then clearly congruence (2.11) holds. If 3 - b, we show that congruence (2.11) holds,
too. Indeed, since 3 - b, it follows from congruence (2.11) that

2a2 − (3m−1 − 1)(3m−1 − 2)b2 ≡ 0 (mod 3). (2.12)

Moreover, we have 2a2 ≡ 2 (mod 3) for 3 - a. Thus congruence (2.12) reduces to 2− 2b2 ≡
0 (mod 3). The last congruence holds for 3 - b. Hence, congruence (2.12) holds for any
integers b. So we can conclude that α3m−1

= [1] if and only if

a ∈ Z3m−1 , b ∈ {0, 1, · · · , 3m − 1}. (2.13)

Thus there are precisely 3m−1 × 3m = 32m−1 elements α ∈ U(R) such that α3m−1
= [1].

Recall that |Q| = 32m−1, we obtain α3m−1
= [1] for α ∈ Q.

Next, we show that there exist elements in Q with order 3m−1. Indeed, putting W =
3m−2. Substituting the value for W into congruence (2.7). Note that 3m | 3j

(
3m−2

2j

)
for

j > 2, we derive that congruence (2.7) holds if and only if

2a3m−2 − 3m−1(3m−2 − 1)a3m−2−2b2 ≡ 2 (mod 3m). (2.14)

If we substitute a = b = 1 into congruence (2.14), we have 3m−1(3m−2 − 1) ≡ 0 (mod 3m),
which is impossible for m > 2. Accordingly, congruence (2.7) does not hold for a = b = 1,
which implies that (1+

√−3 )3
m−2 6= [1]. Moreover, by the condition (2.13), (1+

√−3 )3
m−1

=
[1]. So β = [1 +

√−3 ] ∈ Q. Hence β is of order 3m−1. So 〈1 +
√−3〉 ∼= Z3m−1 . Thus

Q ∼= Z3m−1 × J , where J is a subgroup of Q with order 3m.
Now, we claim that there are elements in J with order 3m−1. We first note that (1 +√−3)3 = −8, thus (1 +

√−3)3t ∈ Z for t > 1. Moreover, since (1 +
√−3)2 = −2 + 2

√−3,
we conclude that (1 +

√−3)s = x + y
√−3, where 3 - y and 3 - s. Let γ = [1 + 3

√−3 ]. By
condition (2.13), γ ∈ Q. Thus γ3m−1

= [1] but γ 6∈ 〈1 +
√−3 〉. Hence, γ ∈ J . Substituting

a = 1, b = 3 and W = 3m−2 into congruence (2.8), and note that 3m | 3j
(

3m−2

2j+1

)
for j > 2,

we derive that congruence (2.8) holds if and only if

3m−1 − 3m+1(3m−2 − 1)(3m−2 − 2)
2

≡ 0 (mod 3m).

The above congruence does not hold for m > 2. It follows that (1+3
√−3 )3

m−2 6= [1]. Thus,
γ ∈ J is of order 3m−1. Hence, Z3m−1 is a subgroup of J , and J ∼= Z3m−1 × Z3. Accordingly,
if d = −3, then U(R) ∼= Z2 × Z3 × Z3m−1 × Z3m−1 , as desired.

(4) (a) Suppose that d 6= −3. Let n = 2m + 1 with m > 1. For α = [a + b
√

d ] ∈ R, we
know that α ∈ U(R) if and only if D - a. Then, for n = 2m+1, we have |U(R)| = (D−1)·D2m.
So U(R) = K ×G, where K, G are finite groups, and |K| = D − 1, |G| = D2m.
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We now determine the structure of G. Consider the polynomial expansions of αX , where
X is an arbitrary integer. By Theorem 2.1 (2), αX equals to the equivalence class [1] if and
only if the following congruences hold

aX + d ( X
2 ) aX−2b2 + · · ·+ d

X−1
2

(
X

X−1

)
abX−1 ≡ 1 (mod Dm+1), (2.15)

( X
1 ) aX−1b + d ( X

3 ) aX−3b3 + · · ·+ d
X−1

2 bX ≡ 0 (mod Dm). (2.16)

Firstly, putting X = Dm, and noting that Dm+1 | dj
(

Dm

2j

)
for j > 1, we derive that congru-

ence (2.15) holds if and only if aDm ≡ 1 (mod Dm+1), if and only if a ∈ {1, 2, · · · , Dm+1−1}
with a ∈ ZDm . Therefore, congruence aDm ≡ 1 (mod Dm+1) has precisely Dm solutions.

On the other hand, congruence (2.16) holds for b ∈ {1, 2, · · · , Dm − 1}. Hence, the
number of elements in U(R) satisfying αDm

= [1] is Dm×Dm = D2m. Recall that |G| = D2m,
we derive that αDm

= [1] if and only if α ∈ G.
Secondly, substituting X = Dm−1 into congruence (2.16). If αDm−1

= [1], clearly α ∈ G.
Since d 6= −3, we have Dm | dj

(
Dm−1

2j+1

)
for j > 1. Therefore, congruence (2.16) holds if and

only if D | b. In the case of D | b, congruence (2.15) holds if and only aDm−1 ≡ 1 (mod Dm+1),
if and only if a ∈ ZDm−1 . Therefore, the number of elements in G satisfying αDm−1

= [1] is
Dm−1 ×Dm−1 = D2m−2. Hence, there are precisely

D2m −D2m−2 = (d2 − 1) · d2m−2 (2.17)

elements of order Dm in R.
Now, let β = [1+

√
d ]. Then βDm

= [1]. However, by the above argument, we know that
βDm−1 6= [1]. So the order of β is Dm. Therefore ZDm is a subgroup of G, and G ∼= ZDm×G2,
where 〈1 +

√
d 〉 ∼= ZDm and |G2| = Dm.

Suppose G2
∼= ZDs1 ×· · ·×ZDsh , where s1 + · · ·+sh = m. If h > 2, then 1 6 sj 6 m−1

for j = 1, · · · , h. Hence, there are precisely (D−1) ·D2m−1 elements of order Dm in R, which
contradicts the above result (2.17). If h = 1, then G2

∼= ZDm and hence G ∼= ZDm × ZDm .
Thus the number of elements in R of order Dm is (d2 − 1) · d2m−2, which is the same as
(2.17). Hence, we conclude that h = 1 and G2

∼= ZDm . Therefore, if n = 2m+1 with m > 1,
then U(R) ∼= K × ZDm × ZDm .

Finally, we determine the structure of the subgroup K for each case. Recall that |K| =
D − 1. If d = −7, then |K| = 6 = 2 × 3, we have K ∼= Z2 × Z3

∼= ZD−1. If d = −11,
then |K| = 10 = 2 × 5, thus K ∼= Z2 × Z5

∼= ZD−1. If d = −19, then |K| = 18 = 2 × 32,
and by the similar argument to (3) above, the element [4] ∈ R is of order 32 × 19m. So
K ∼= Z2 × Z32 ∼= ZD−1. If d = −43, then |K| = 42 = 6 × 7, so K ∼= Z6 × Z7

∼= ZD−1.
If d = −67, then |K| = 66 = 6 × 11, thus K ∼= Z6 × Z11

∼= ZD−1. If d = −163, then
|K| = 162 = 2 × 34, and by the similar argument to (3) above, the element [4] ∈ R is
of order 34 × 163m. So K ∼= Z2 × Z34 ∼= ZD−1. Hence K ∼= ZD−1 for each case. Thus
U(R) ∼= ZD−1 × ZDm × ZDm , as desired.

(b) Suppose d = −3. Let α = [a + b
√−3 ] ∈ R, where 3 - a. Then |U(R)| = 2× 32m. So

U(R) = Z2 ×G, where |G| = 32m. Applying the similar argument of above (a) for the case
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d 6= −3, we get that αDm

= [1] if and only if a ∈ Z3m and b ∈ {0, 1, · · · , 3m − 1}, if and only
if α ∈ G.

Now, substituting X = 3m−1 into congruence (2.16). We obtain that congruence (2.16)
holds if and only if 2a2b− (3m−1 − 1)(3m−1 − 2)b3 ≡ 0 (mod 3). We can verify that the last
congruence holds for any integers b.

On the other hand, congruence (2.15) holds if and only if

2a3m−1 − 3m(3m−1 − 1)a3m−1−2b2 ≡ 2 (mod 3m+1). (2.18)

Clearly, the above congruence (2.18) does not hold, if a = b = 1. So (1 +
√−3 )3

m

= [1], but
(1 +

√−3 )3
m−1 6= [1]. Hence, β = [1 +

√−3 ] ∈ G is of order 3m. Then G ∼= Z3m ×E, where
〈1 +

√−3 〉 ∼= Z3m , |E| = 3m.
Furthermore, if we substitute a = 2, b = 3 into above congruence (2.18), we have

23m−1 − 1 ≡ 0 (mod 3m+1). (2.19)

However,

23m−1−1 = (3− 1)3
m−1−1

= 33m−1 − (
3m−1

1

)
33m−1−1 + · · · − (

3m−1

2

)× 32 +
(

3m−1

1

)× 3− 2

≡ 3m − 2 (mod 3m+1).

Therefore, congruence (2.19) does not hold for m > 1. Hence, if we let γ = [2 + 3
√−3 ],

then by the above argument, we have γ3m

= [1], but γ3m−1 6= [1]. Thus, γ is of order 3m. It
leads to γ ∈ G. Moreover, (1 +

√−3)3t ∈ Z for t > 1, (1 +
√−3)s = x + y

√−3, where 3 - y
and 3 - s. So we get that γ 6∈ 〈1 +

√−3 〉, which implies that γ ∈ E. Recall that |E| = 3m,
therefore we have E ∼= 〈2 + 3

√−3 〉 ∼= Z3m .
Hence, if d = −3, then U(R) ∼= Z2 × Z3m × Z3m , as desired.
Theorem 2.7 Let p ∈ Z be an odd prime satisfying the Legendre symbol ( p

−d
) = −1.

Let R = Rd/〈pn〉, n > 1. Then U(R) ∼= Zp2−1 × Zpn−1 × Zpn−1 .
Proof For α = [a + b

√
d ] ∈ Rd/〈pn〉, where 0 6 a, b 6 pn − 1, it is easy to prove that

α is a unit of R if and only if p - (a2 − db2). So |U(R)| = (p2 − 1)p2n−2.
If n = 1, as p is prime in R, then Rd/〈p〉 is a field with p2 elements. Therefore

U(R) ∼= Zp2−1.
If n > 2, then U(R) ∼= G1 ×G2, where G1 and G2 are finite groups, and |G1| = p2 − 1,

|G2| = p2n−2. First, we prove that G1
∼= Zp2−1. Clearly, there is an epimorphism of rings

φ : Rd/〈pn〉 → Rd/〈p〉.

So there exists an epimorphism of groups

ϕ : U(Rd/〈pn〉) → U(Rd/〈p〉).
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That is ϕ : U(R) → Zp2−1. Clearly, the kernel ker(ϕ) of ϕ is G2. If Zp2−1 = 〈η〉, then there
exists θ ∈ U(R) such that ϕ(θ) = η. Suppose the order of θ ∈ U(R) is t, then ϕ(θt) = 1. Since
the order of η ∈ Zp2−1 is p2− 1, we have ϕ(θp2−1) = ηp2−1 = 1. Therefore, ϕ(θt) = ϕ(θp2−1),
i.e., ηt = ηp2−1 = 1. Thus we easily find that (p2 − 1) | t, that is (p2 − 1) | o(θ). Recall that
ker(ϕ) = G2, and ϕ(θ) = η 6= 1, so θ 6∈ ker(ϕ) = G2. Thus θ ∈ G1, and o(θ) | (p2 − 1).
Therefore, o(θ) = p2 − 1. So we may conclude that G1

∼= Zp2−1.
In the following, we investigate the structure of G2. For α = [a + b

√
d ] ∈ G2. It is

obvious that either p - a or p - b. Consider the polynomial expansions of αN , where N > 1 is
an arbitrary odd integer. It is evident that αN = [1] if and only if the following congruences
hold

aN + d ( N
2 ) aN−2b2 + · · ·+ d

N−1
2

(
N

N−1

)
abN−1 ≡ 1 (mod pn), (2.20)

( N
1 ) aN−1b + d ( N

3 ) aN−3b3 + · · ·+ d
N−1

2 bN ≡ 0 (mod pn). (2.21)

By the similar argument to Theorem 2.6 (3), we know that αpn−1
= 1 for all α ∈ G2, and

there are precisely p2n−4 elements γ ∈ G2 satisfying γpn−2
= [1].

Moreover, let β = [c + e
√

d ] ∈ G2 with p - c and p ‖ e. By the polynomial expansions
of βpn−2

, we know that βpn−2 6= 1, which implies o(β) = pn−1. So G2
∼= H × P , where

H = 〈β〉 ∼= Zpn−1 and |P | = pn−1.
Suppose G2

∼= Zpn−1 × Zph1 × · · · × Zphr , where h1 + · · · + hr = n − 1. If r > 2, then
1 6 hi 6 n − 2 for i = 1, · · · , r. Thus there are pn−2ph1 · · · phr = p2n−3 elements γ ∈ G2

satisfying γpn−2
= [1], which contradicts the above result. If r = 1, then G2

∼= Zpn−1×Zpn−1 .
So there are exactly pn−2pn−2 = p2n−4 elements γ ∈ G2 satisfying γpn−2

= [1], which is the
same as above result. So we derive that r = 1 and this leads to G2

∼= Zpn−1 × Zpn−1 . This
completes the proof.

Theorem 2.8 Let q ∈ Z be a prime satisfying the Legendre symbol ( q
−d

) = 1. Suppose
that π is a proper factor of q. Let R = Rd/〈πn〉, n > 1.

(1) Suppose q = 2. Then U(R) ∼= Z1 if n = 1, U(R) ∼= Z2 if n = 2, U(R) ∼= Z2 × Z2n−2

if n > 2.
(2) Suppose q 6= 2. Then U(R) ∼= Zqn−1 × Zq−1.
Proof Applying Theorem 2.1 (4), we derive that R ∼= Z/〈qn〉. So the theorem follows.
We obtain from the proof of Theorem 1.2 that 2 is not a prime in Rd if d = −7. So we

may assume d 6= −7 in the following theorems. We investigate the unit groups of Rd/〈2n〉
for d = −3, −11, −19, −43, −67, −163.

Theorem 2.9 Suppose d = −3,−11,−19,−43,−67,−163. Let R = Rd/〈2n〉, n > 2.
Then

(1) U(R) = R1 ∪R2 ∪R3, where
R1 =

{
[r1 + r2

√
d ] : 0 6 r1, r2 6 2n−1 − 1, r1, r2 ∈ Z are not of the same parity

}
,

R2 =
{
[r1 − r2

√
d ] : 0 6 r1 6 2n−1 − 1, 1 6 r2 6 2n−1, r1, r2 ∈ Z are not of the same parity

}
,

R3 =
{
[ r1

2
± r2

2

√
d ] : 1 6 ri 6 2n − 1, ri ∈ Z, 2 - ri, i = 1, 2

}
.

(2) Suppose n > 4. Then there are exactly 8 elements α ∈ R1 ∪R2 satisfying α2 = [1].
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(3) Suppose n > 5. Then there are exactly 32 elements α ∈ R1 ∪R2 satisfying α4 = [1].
Proof (1) If α = [r1 ± r2

√
d ] ∈ R, where r1, r2 ∈ Z, it is easy to show that α ∈ U(R)

if and only if 2 - N(α), i.e., 2 - (r2
1 − dr2

2), if and only if r1 and r2 are not of the same parity.
If α = [ r1

2
± r2

2

√
d ] ∈ R, where r1, r2 ∈ Z with 2 - r1r2, then α ∈ U(R) if and only if

2 - N(α), i.e., 2 - 1
4
(r2

1 − dr2
2), if and only if 8 - (r2

1 − dr2
2). Let ri = 2ki + 1, i = 1, 2. Then

r2
1 − dr2

2 = 4(k2
1 + k1 − dk2

2 − dk2) + (1− d).

Clearly, 2 | (k2
1 + k1− dk2

2 − dk2). However, 4 ‖ (1− d) for d = −3,−11,−19,−43,−67,−163.
Therefore, 8 - (r2

1 − dr2
2). Hence, α ∈ U(R).

(2) First, let α = a ∈ Z, where 1 6 a 6 2n−1 − 1. Then α ∈ U(R) if and only if 2 - a.
By Corollary 2.5, α2 = [1] if and only if a2 ≡ 1 (mod 2n). The last congruence has precisely
2 solutions.

Second, let α = ±b
√

d, where 1 6 b 6 2n−1− 1. Then α ∈ U(R) if and only if 2 - b. Let
b = 2k + 1. By Corollary 2.5, α2 = [1] if and only if d(4k2 + 4k + 1) ≡ 1 (mod 2n). Since
d−1 = −4x, where x = 1, 3, 5, 11, 17, 41, we obtain that d(4k2+4k+1)−1 = 4(k2d+kd−x).
Note that 2 - (k2d+kd−x), we derive that d(4k2 +4k+1) 6≡ 1 (mod 2n). Therefore α2 6= [1].

Thirdly, let α = a + b
√

d, where 1 6 a, b 6 2n−1− 1, a, b ∈ Z are not of the same parity.
By Corollary 2.5, α2 = [1] if and only if the following congruences hold

a2 + b2d = 2n−1k1 + 1, (2.22)

2ab = 2n−1k2, (2.23)

where k1 and k2 are of the same parity. If 2 - a while 2 | b, then (2.23) reduces to b ≡
0 (mod 2n−2). Recall that 1 6 b 6 2n−1 − 1, so the last congruence has exactly one solution
b = 2n−2. Hence, the left hand of (2.23) is 2ab = 2n−1a with 2 - a. The left hand of (2.22) is
a2 + b2d = a2 + 22n−4d = a2 + 2n−1 × 2n−3d. Because n > 4, so 2n−3 is even. Then equality
(2.22) holds for some odd integers k1 if and only if a2 = 2n−1k + 1 for some odd integers k,
if and only if a = 2n−2 ± 1. So we can conclude that in the case of 2 - a and 2 | b, there are
exactly 2 elements α satisfying α2 = [1].

On the other hand, suppose that 2 | a while 2 - b. Then (2.23) reduces to a ≡ 0 (mod 2n−2).
Recall that 1 6 a 6 2n−1 − 1, so the last congruence has exactly one solution a = 2n−2.
Hence, the left hand of (2.23) is 2ab = 2n−1b with 2 - b. The left hand of (2.22) is a2 + b2d =
22n−4+b2d = 2n−1×2n−3+b2d. So equality (2.22) holds for some odd integers k1 if and only if
b2d = 2n−1h+1 for some odd integers h. Putting b = 2s+1, then b2d−1 = 4d(s2+s)+(d−1).
Because s2 + s is even and 4 ‖ (d− 1) for d = −3,−11,−19,−43,−67,−163, we obtain that
4 ‖ (b2d− 1). Therefore, for n > 4, b2d 6= 2n−1h + 1 for any integers h. So we can conclude
that in the case of 2 | a and 2 - b, there does not exist any element α satisfying α2 = [1].

Finally, let α = a− b
√

d, where 1 6 a 6 2n−1 − 1, 1 6 b 6 2n−1, a, b ∈ Z are not of the
same parity. If 2 - a while 2 | b, then (2.23) reduces to b ≡ 0 (mod 2n−2). Thus b = 2n−2 or
2n−1. In the case of b = 2n−2, applying the similar argument of above, we get that α2 = [1] if
and only if a = 2n−2 ± 1. For the other case b = 2n−1, equality (2.23) reduces to 2ab = 2na,
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and the left hand of equality (2.22) is a2 + b2d = a2 + 22n−2d. By Corollary 2.5, α2 = [1] if
and only if a2 ≡ 1 (mod 2n), if and only if a = 1, 2n−1 − 1. Therefore, there are exactly 4
elements α satisfying α2 = [1], if 2 - a and 2 | b.

On the other hand, if 2 | a while 2 - b, by the similar above argument, we obtain that
α2 6= [1].

Thus, there are exactly 8 elements α ∈ R1 ∪R2 satisfying α2 = [1], as desired.
(3) Firstly, let α = a ∈ Z, where 1 6 a 6 2n−1 − 1 with 2 - a, a ∈ Z. By Corollary 2.5,

α4 = [1] if and only if a4 ≡ 1 (mod 2n). The last congruence has precisely 4 solutions.
Secondly, let α = ±b

√
d, where 1 6 b 6 2n−1 − 1 with 2 - b, b ∈ Z. Let b = 2k + 1. By

Corollary 2.5, α4 = [1] if and only if b4d2 − 1 ≡ 0 (mod 2n), i.e.,

8d2(2k4 + 4k3 + 3k2 + k) + (d2 − 1) ≡ 0 (mod 2n). (2.24)

It is evident that 24 - (d2−1) for d = −3,−11,−19,−43,−67,−163. So b4d2−1 6≡ 0 (mod 2n)
for n > 5. Thus, α4 6= [1].

Thirdly, let α = a + b
√

d, where 1 6 a, b 6 2n−1− 1, a and b are not of the same parity.
By Corollary 2.5, α4 = [1] if and only if the following congruences hold

a4 + b2(6a2d + b2d2) = 2n−1k1 + 1, (2.25)

4b(a3 + ab2d) = 2n−1k2, (2.26)

where k1 and k2 are of the same parity. If 2 - a while 2 | b, then (2.26) reduces to b ≡
0 (mod 2n−3). The last congruence has exactly three solutions b = 2n−3x, where x = 1, 2, 3.
Suppose first that b = 2n−3x, x = 1, 3. Then the left hand of equation (2.26) equals
4b(a3 + ab2d) = 2n−1k2, where k2 = x(a3 + ab2d) is odd.

On the other hand, the left hand of equation (2.25) equals a4 + 2n−1(3 × 2n−4a2d +
23n−11d2x2)x2. Since n > 5, we get that (3 × 2n−4a2d + 23n−11d2x2)x2 is even. Therefore,
α4 = [1] if and only if a4 = 2n−1s + 1 for some odd integers s. Since 1 6 a 6 2n−1 − 1,
clearly there are exactly 4 elements a satisfying a4 = 2n−1s + 1 for some odd integers
s. Now suppose b = 2n−3x, where x = 2. Then the left hand of equation (2.26) equals
4b(a3 + ab2d) = 2n(a3 + ab2d). Therefore, by equation (2.25), we obtain that α4 = [1] if and
only if a4 ≡ 1 (mod 2n). The last congruence has exactly 4 solutions a ∈ {1, · · · , 2n−1 − 1}.
Hence, there are totally 12 elements α satisfying α4 = [1], in the case of 2 - a and 2 | b.
For another case of 2 | a and 2 - b, we reduce from equation (2.25) that 2n−3 | a. Hence,
a = 2n−3y, where y = 1, 2, 3. Suppose a = 2n−3y, where y = 1, 3. Then by equations
(2.25) and (2.26), α4 = [1] if and only if b4d2 = 2n−1s + 1 for some odd integers s. Let
b = 2k + 1, then b4d2− 1 is equal to the left side of congruence (2.24). Since 24 - (d2− 1) for
d = −3,−11,−19,−43,−67,−163. So b4d2 − 1 6≡ 0 (mod 2n−1) for n > 5. Thus, α4 6= [1].
Next, we assume that a = 2n−3y, where y = 2. Then by equations (2.25) and (2.26), α4 = [1]
if and only if b4d2 ≡ 1 (mod 2n), if and only if congruence (2.24) holds for any integers k

and n. However, this congruence does not hold for n > 5. Therefore, we can conclude that
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in the case of 2 | a and 2 - b, there does not exist any element α satisfying α4 = [1]. Hence,
there are totally 12 elements α = [a + b

√
d] ∈ R1 satisfying α4 = [1], where a 6= 0 and b 6= 0.

Finally, let α = a − b
√

d, where 1 6 a 6 2n−1 − 1, 1 6 b 6 2n−1, a and b are not
of the same parity. If 2 - a while 2 | b, then (2.26) reduces to b ≡ 0 (mod 2n−3). The last
congruence has exactly four solutions, namely b = 2n−3x, where x = 1, 2, 3, 4. Applying
the similar argument above, we obtain that there are exactly 16 elements α ∈ R2 satisfying
α4 = [1], where a 6= 0. On the other hand, if 2 | a and 2 - b, there does not exist any element
α ∈ R2 satisfying α4 = [1].

Thus, there are exactly 32 elements α ∈ R1 ∪R2 satisfying α4 = [1], as desired.
In the sequel, we assume that 2 is prime in the ring Rd. If n = 1, by Theorem 2.1 (5)

and Theorem 2.9, Rd/〈2〉 is a field with 4 elements. Therefore, U(Rd/〈2n〉) ∼= Z3.
If n = 2, then |U(Rd/〈2n〉)| = 3× 22. The unit group of Rd/〈2n〉 is

{
1, ±

√
d, 1− 2

√
d,

1
2
± 1

2

√
d,

1
2
± 3

2

√
d,

3
2
± 1

2

√
d,

3
2
± 3

2

√
d

}
.

By calculation, we obtain that for d = −3,−11,−19,−43,−67,−163, (±
√

d)2 = 4k + 1 for
some integers k. So by Corollary 2.5, ±

√
d is of order 2. Similarly, ( 3

2
± 3

2

√
d)3 = −27 = [1].

So the order of 3
2
± 3

2

√
d is 3. Moreover, we show that o(1 − 2

√
d) = 2, o( 1

2
± 1

2

√
d) =

o( 1
2
± 3

2

√
d) = o( 3

2
± 1

2

√
d) = 6. Hence, U(Rd/〈22〉) ∼= Z3 × Z2 × Z2.

Analogously, if n = 3, then |U(Rd/〈2n〉)| = 3× 24. The unit group of Rd/〈2n〉 is
{

1, 3, ±
√

d, ±3
√

d, 1± 2
√

d, 2±
√

d, 2± 3
√

d, 3± 2
√

d, 1− 4
√

d, 3− 4
√

d
}

⋃ {
a

2
± b

2

√
d : a, b = 1, 3, 5, 7

}
.

By calculation, we obtain that o(3) = o(1±2
√

d) = o(3±2
√

d) = o(1−4
√

d) = o(3−4
√

d) = 2,
and o(±

√
d) = o(±3

√
d) = o(2+

√
d) = o(2+3

√
d) = o(2−

√
d) = o(2−3

√
d) = 4. Moreover,

o(a
2
± b

2

√
d) 6= 2, 4 for a, b = 1, 3, 5, 7. Therefore, U(Rd/〈23〉) ∼= Z3 × Z22 × Z2 × Z2.

Theorem 2.10 Suppose that d = −3, −11, −19, −43, −67 or −163. Then
(1) U(Rd/〈2〉) ∼= Z3.
(2) U(Rd/〈2n〉) ∼= Z3 × Z2n−1 × Z2n−2 × Z2 for n > 2.
Proof The unit groups for the cases of n = 1, 2, 3 have been stated above. So we

assume n > 4 in the following. By Theorem 2.9, we get |U(Rd/〈2n〉)| = 3 × 22n−2. Thus
U(Rd/〈2n〉) ∼= Z3 ×H, where H is a subgroup with order 22n−2.

Firstly, we claim that α2n−1
= [1] for α ∈ R1 ∪ R2, where R1 and R2 are stated in

Theorem 2.9. Indeed, if we put α = a + b
√

d ∈ R1, αM = A + B
√

d, M is even, then

A = aM + d ( M
2 ) aM−2b2 + d2 ( M

4 ) aM−4b4 + · · ·+ d
M−2

2
(

M
M−2

)
a2bM−2 + d

M
2 bM ,

B = ( M
1 ) aM−1b + d ( M

3 ) aM−3b3 + · · ·+ d
M−4

2
(

M
M−3

)
a3bM−3 + d

M−2
2

(
M

M−1

)
abM−1.

Let M = 2n−1. If 2 - a while 2 | b, then 2n | (
2n−1

s

)
bs for 1 6 s 6 2n−1. So we derive

2n | (A− a2n−1
) and 2n |B. Hence, A = 2nt + a2n−1

and B = 2nk for some integers t, k. By
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Corollary 2.5, α2n−1
= [1] if and only if a2n−1 ≡ 1 (mod 2n). Because U(Z/〈2n〉) ∼= Z2×Z2n−2

for n > 3, we derive that a2n−1 ≡ 1 (mod 2n) for 2 - a and n > 3. Thus α2n−1
= [1] in the

case of 2 - a and 2 | b.
On the other hand, suppose 2 | a while 2 - b. Since 2n | (

2n−1

s

)
a2n−1−s for 0 6 s 6

2n−1 − 1, it is obvious that 2n | (A − d2n−2
b2n−1

) and 2n |B. Since d, b ∈ U(Z/〈2n〉), we
must have d2n−2 ≡ 1 (mod 2n) and b2n−1 ≡ 1 (mod 2n). Hence, d2n−2

b2n−1 ≡ 1 (mod 2n).
Therefore, α2n−1

= [1] in the case of 2 | a and 2 - b. So we conclude that α2n−1
= [1] for

α ∈ R1. Similarly, we have α2n−1
= [1] for α ∈ R2. Thus, our claim follows.

Secondly, we prove that Z2n−1 is a subgroup of H. Since the number of the set R1 ∪R2

is precisely 22n−2 and note that the subgroup H is of order 22n−2, we can conclude that
α ∈ H if and only if α ∈ R1 ∪ R2. So H = R1 ∪ R2. Furthermore, let α0 = [2 +

√
d] ∈ H.

We prove that α2n−2

0 6= [1]. Setting a = 2, b = 1,M = 2n−2. Substituting these values into
the expressions for A and B. Since 2n | (

2n−2

s

)
as for 3 6 s 6 2n−2, and 2n−1 ‖ (

2n−2

s

)
as for

s = 1, 2, we derive that 2n−1 ‖ (A − d2n−3
) and 2n−1 ‖ B. So A = 2n−1k + d2n−3

for some
odd integers k. Moreover, owing to Corollary 2.5, α2n−2

0 = [1] if and only if A = 2n−1t+1 for
some odd integers t, i.e., A = 2n−1k+d2n−3

= 2n−1t+1, if and only if d2n−3
= 2n−1(t−k)+1.

Since 2 - kt, we have t− k is even. Therefore, α2n−2

0 = [1] if and only if d2n−3 ≡ 1 (mod 2n).
In the following, we show that d2n−3 6≡ 1 (mod 2n) for d = −3, −11, −19, −43, −67 or −163.
Indeed, we have −d = 4e− 1 for some odd integers e. Then

d2n−3 − 1 = (4e− 1)2
n−3 − 1 = (4e)2

n−3 − (
2n−3

1

)
(4e)2

n−3−1 + · · ·+ (
2n−3

2

)
(4e)2 − (

2n−3

1

)
4e.

It is evident that 2n | (
2n−3

s

)
(4e)s for 2 6 s 6 2n−3. However,

(
2n−3

1

)
4e = 2n−1e is not

divisible by 2n. Thus d2n−3 6≡ 1 (mod 2n). Hence, α2n−2

0 6= [1], which implies that α0 is of
order 2n−1. Therefore, Z2n−1 is a subgroup of H, as desired.

Now, owing to Theorem 2.9 (2), we obtain that H ∼= Z2n−1 × Z2i × Z2j , where i, j > 1
and i + j = n − 1. If n = 4, then i + j = 3. Hence, H ∼= Z2n−1 × Z22 × Z2 for the case
n = 4. Next, we assume that n > 4. If i, j > 2, then there are precisely 64 elements
α ∈ Z2n−1 × Z2i × Z2j satisfying α4 = [1], which contradicts Theorem 2.9 (3). If i = n − 2
and j = 1, then there are precisely 32 elements α ∈ Z2n−1 × Z2n−2 × Z2 satisfying α4 = [1],
which is the same as Theorem 2.9 (3). Therefore, we conclude that H ∼= Z2n−1 ×Z2n−2 ×Z2.
This completes the proof of the theorem.
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虚二次环的商环的单位群

韦扬江, 苏磊磊, 唐高华

(广西师范学院数学与统计科学学院, 广西南宁 530023)

摘要: 本文研究了有理数域 Q的二次扩域Q(
√

d)的整数环 Rd 的商环的单位群. 利用二项式分解以

及有限交换群的结构性质, 获得了 d = −3, −7, −11, −19, −43, −67, −163时 Rd/〈ϑn〉 的单位群结构, 其

中 ϑ 是 Rd 的素元, n 是任意正整数. 所得的结果推广了由 J. T. Cross (1983), G. H. Tang 与 H. D. Su

(2010) 对 d = −1, 以及 Y. J. Wei (2016) 对 d = −2时关于 Rd/〈ϑn〉 的单位群的研究.
关键词: 虚二次环; 商环; 单位群; 二次扩域
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