|
摘要: |
本文研究了伪黎曼对称空间SL(n+1,R)/S(GL(1,R)×GL(n,R))线丛上的微分方程.利用李代数方法,即Casimir算子得到这个微分算子.这个微分算子是一个超几何方程,这个结论推广了文献[1,3,5]中的微分方程. |
关键词: Casimir算子 伪黎曼对称空间 线丛 超几何方程 |
DOI: |
分类号:O152.5 |
基金项目:Supported by the Research Foundation of Education Department of Hubei Province (Q20121512). |
|
A HYPERGEOMETRIC EQUATION ON THE LINE BUNDLE OVER SL(n+1,R)/S(GL(1,R)×GL(n,R)) |
YANG Xiang-hui,HE Min-hua,ZHU Li
|
Abstract: |
In this paper, we study the difierential equation on the line bundle over the pseudo-Riemannian symmetric space SL(n + 1,R)/S(GL(1,R)×GL(n,R)). We use Lie algebraic method, i.e., Casimir operator to obtain the desired difierential operator. The difierential equation turns out to be a hypergeometric difierential equation, which generalizes the difierential equations in[1, 3, 5]. |
Key words: Casimir operator pseudo-Riemannian symmetric space line bundle hypergeometric equation |