|
摘要: |
设H是域k上的有限维Hopf代数,A是左H-模代数.本文研究了Gorenstein平坦(余挠)维数在A-模范畴和A#H-模范畴之间的关系.利用可分函子的性质,证明了(1)设A是右凝聚环,若A#H/A可分且φ:A→A#H是可裂的(A,A)-双模同态,则l:Gwd(A)=l:Gwd(A#H);(2)若A#H/A可分且φ:A→A#H是可裂的(A,A)-双模同态,则l:Gcd(A)=l:Gcd(A#H),推广了斜群环上的结果. |
关键词: 凝聚环 Gorenstein平坦模 Gorenstein余挠模 |
DOI: |
分类号:O154.2 |
基金项目:Supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province (15KJB110023) and the School Foundation of Yangzhou University (2015CJX002). |
|
GORENSTEIN FLAT(COTORSION) DIMENSIONS AND HOPF ACTIONS |
MENG Fan-yun
|
Abstract: |
In this paper, we study the relationship of Gorenstein fieldat (cotorsion) dimensions between A-Mod and A#H-Mod. Using the properties of separable functors, we get that (1) Let A be a right coherent ring, assume that A#H/A is separable and φ:A→A#H is a splitting monomorphism of (A, A)-bimodules, then l:Gwd(A)=l:Gwd(A#H); (2) Assume that A#H/A is separable and φ:A→A#H is a splitting monomorphism of (A, A)-bimodules, then l:Gcd(A)=l:Gcd(A#H), which generalized the results in skew group rings. |
Key words: coherent ring Gorenstein fieldat module Gorenstein cotorsion module |