| 摘要: | 
			 
		     | 设H是域k上的有限维Hopf代数,A是左H-模代数.本文研究了Gorenstein平坦(余挠)维数在A-模范畴和A#H-模范畴之间的关系.利用可分函子的性质,证明了(1)设A是右凝聚环,若A#H/A可分且φ:A→A#H是可裂的(A,A)-双模同态,则l:Gwd(A)=l:Gwd(A#H);(2)若A#H/A可分且φ:A→A#H是可裂的(A,A)-双模同态,则l:Gcd(A)=l:Gcd(A#H),推广了斜群环上的结果. | 
			
	         
				| 关键词:  凝聚环  Gorenstein平坦模  Gorenstein余挠模 | 
			 
                | DOI: | 
            
                | 分类号:O154.2 | 
			 
             
                | 基金项目:Supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province (15KJB110023) and the School Foundation of Yangzhou University (2015CJX002). | 
          |  | 
           
                | GORENSTEIN FLAT(COTORSION) DIMENSIONS AND HOPF ACTIONS | 
           
			
                | MENG Fan-yun | 
           
		   
		   
                | School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, China | 
		   
             
                | Abstract: | 
			
                | In this paper, we study the relationship of Gorenstein fieldat (cotorsion) dimensions between A-Mod and A#H-Mod. Using the properties of separable functors, we get that (1) Let A be a right coherent ring, assume that A#H/A is separable and φ:A→A#H is a splitting monomorphism of (A, A)-bimodules, then l:Gwd(A)=l:Gwd(A#H); (2) Assume that A#H/A is separable and φ:A→A#H is a splitting monomorphism of (A, A)-bimodules, then l:Gcd(A)=l:Gcd(A#H), which generalized the results in skew group rings. | 
	       
                | Key words:  coherent ring  Gorenstein fieldat module  Gorenstein cotorsion module |