| 摘要: | 
			 
		     | 本文研究了当粘性系数和毛细系数是密度函数的一般光滑函数时,一维等温的可压缩NavierStokes-Korteweg方程的Cauchy问题.利用基本能量方法和Kanel的技巧,得到了大初值、非真空光滑解的整体存在性与时间渐近行为.本文结果推广了已有文献中的结论. | 
			
	         
				| 关键词:  可压缩Navier-Stokes-Korteweg方程  整体存在性  时间渐近行为  大初值 | 
			 
                | DOI: | 
            
                | 分类号:O175.29 | 
			 
             
                | 基金项目:Supported by National Natural Science Foundation of China (11426031) and Undergraduate Scientific Research Training Program of Anhui University (ZLTS2015141). | 
          |  | 
           
                | GLOBAL SMOOTH SOLUTIONS TO THE 1-D COMPRESSIBLE NAVIER-STOKES-KORTEWEG SYSTEM WITH LARGE INITIAL DATA | 
           
			
                | CHEN Ting-ting, CHEN Zhi-chun, CHEN Zheng-zheng | 
           
		   
		   
                | School of Mathematical Sciences, Anhui University, Hefei 230601, China | 
		   
             
                | Abstract: | 
			
                | This paper is concerned with the Cauchy problem of the one-dimensional isothermal compressible Navier-Stokes-Korteweg system when the viscosity coe-cient and capillarity coe-cient are general smooth functions of the density. By using the elementary energy method and Kanel's technique[25], we obtain the global existence and time-asymptotic behavior of smooth non-vacuum solutions with large initial data, which improves the previous ones in the literature. | 
	       
                | Key words:  compressible Navier-Stokes-Korteweg system  global existence  time-asymptotic behavior  large initial data |