|
摘要: |
本文研究了加权流形上加权p-Laplacian特征值问题的第一特征值下界估计的问题.利用余面积公式、Cavalieri原理以及Federer-Fleming定理,获得了由Cheeger常数或等周常数确定的第一特征值的下界估计. |
关键词: 加权p-Laplacian 加权流形 等周常数 第一特征值 下界 |
DOI: |
分类号:O186.12 |
基金项目:Supported by National Natural Science Foundation of China (11201400) |
|
ISOPERIMETRIC ESTIMATE OF THE FIRST EIGENVALUES FOR THE WEIGHTED p-LAPLACIAN ON MANIFOLDS |
ZHANG Liu-wei,ZHAO Yan
|
Abstract: |
In this paper, we estimate the lower bounds of the first eigenvalues for the weighted p-Laplacian on manifolds. By using the coarea formula, the Cavalieri principle and the FedererFleming theorem, we obtain the estimation of the lower bounds for the first eigenvalues by the Cheeger constant or the isoperimetric constant. |
Key words: weighted p-Laplacian weighted manifold isoperimetric constant first eigenvalue lower bound |