引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1874次   下载 2542 本文二维码信息
码上扫一扫!
分享到: 微信 更多
加权流形上加权p-Laplace特征值问题的第一特征值下界估计
张留伟1,2, 赵艳3,4
1.同济大学数学系, 上海 200092;2.信阳师范学院数学系, 河南 信阳 464000;3.大连理工大学数学科学学院, 辽宁 大连 116024;4.河南轻工业学校公共课数学部, 河南 郑州 450000
摘要:
本文研究了加权流形上加权p-Laplacian特征值问题的第一特征值下界估计的问题.利用余面积公式、Cavalieri原理以及Federer-Fleming定理,获得了由Cheeger常数或等周常数确定的第一特征值的下界估计.
关键词:  加权p-Laplacian  加权流形  等周常数  第一特征值  下界
DOI:
分类号:O186.12
基金项目:Supported by National Natural Science Foundation of China (11201400)
ISOPERIMETRIC ESTIMATE OF THE FIRST EIGENVALUES FOR THE WEIGHTED p-LAPLACIAN ON MANIFOLDS
ZHANG Liu-wei1,2, ZHAO Yan3,4
1.Department of Mathematics, Tongji University, Shanghai 200092, China;2.Department of Mathematics, Xinyang Normal University, Xinyang 464000, China;3.School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China;4.Public Course Teaching Department, Henan Light Industry School, Zhengzhou 450000, China
Abstract:
In this paper, we estimate the lower bounds of the first eigenvalues for the weighted p-Laplacian on manifolds. By using the coarea formula, the Cavalieri principle and the FedererFleming theorem, we obtain the estimation of the lower bounds for the first eigenvalues by the Cheeger constant or the isoperimetric constant.
Key words:  weighted p-Laplacian  weighted manifold  isoperimetric constant  first eigenvalue  lower bound