数学杂志  2016, Vol. 36 Issue (2): 277-284   PDF    
扩展功能
加入收藏夹
复制引文信息
加入引用管理器
Email Alert
RSS
本文作者相关文章
ZHANG Liu-wei
ZHAO Yan
ISOPERIMETRIC ESTIMATE OF THE FIRST EIGENVALUES FOR THE WEIGHTED p-LAPLACIAN ON MANIFOLDS
ZHANG Liu-wei1,2, ZHAO Yan3,4     
1. Department of Mathematics, Tongji University, Shanghai 200092, China;;
2. Department of Mathematics, Xinyang Normal University, Xinyang 464000, China;;
3. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China;;
4. Public Course Teaching Department, Henan Light Industry School, Zhengzhou 450000, China
Abstract: In this paper, we estimate the lower bounds of the first eigenvalues for the weighted p-Laplacian on manifolds. By using the coarea formula, the Cavalieri principle and the FedererFleming theorem, we obtain the estimation of the lower bounds for the first eigenvalues by the Cheeger constant or the isoperimetric constant.
Key words: weighted p-Laplacian     weighted manifold     isoperimetric constant     first eigenvalue     lower bound    
加权流形上加权p-Laplace特征值问题的第一特征值下界估计
张留伟1,2, 赵艳3,4     
1. 同济大学数学系, 上海 200092;;
2. 信阳师范学院数学系, 河南信阳 464000;;
3. 大连理工大学数学科学学院, 辽宁大连 116024;;
4. 河南轻工业学校公共课数学部, 河南郑州 450000
摘要:本文研究了加权流形上加权p-Laplacian特征值问题的第一特征值下界估计的问题.利用余面积公式、Cavalieri原理以及Federer-Fleming定理,获得了由Cheeger常数或等周常数确定的第一特征值的下界估计.
关键词加权p-Laplacian    加权流形    等周常数    第一特征值    下界    
1 Introduction

Let $\Omega$ be a bounded domain with smooth boundary $\partial \Omega $ in an n-dimensional Riemannian manifold (M,g). The p-Laplacian is deflned by

${\Delta _p}:W_0^{1,P}(\Omega ) \mapsto {W^{ - 1,q}}(\Omega ), \\ u \mapsto {\Delta _p}u = div({\left| {\nabla u} \right|^{p - 2}}\nabla u),$

where $W_0^{1,P}(\Omega )$is the Sobolev space given by the closure of $C_0^\infty (\Omega )$ with norm

$\left\| u \right\|_{1,p}^p = {\int_\Omega {\left| u \right|} ^p}dv + \int_\Omega {{{\left| {\nabla u} \right|}^p}} dV,$

and $W_0^{1,P}(\Omega )$ is the dual space of$W_0^{1,P}(\Omega )$ and 1 $1 ﹤ p,q ﹤ \infty ,\frac{1}{p} + \frac{1}{q} = 1$As a generalization of the usual Laplacian, the p-Laplacian is widely used in many subjects, especially ${\Delta _p}$models the non-Newtonian fluids in physics. It describes dilatant fluids when p > 2 and pseudoplastics when p ﹤2 , whereas p =2 corresponds to Newtonian fluids. The operator${\Delta _p}$ with p≠ 2 also appears in many other applications, such as reaction-difiusion problems, flow through porous media, nonlinear elasticity, etc., see [14] for more details.

Let $(M, g, d\mu)$ be a weighted manifold, that is, a Riemannian manifold $(M,g)$ endowed with a weighted volume form $d\mu=e^{-\varphi}dV$, where $\varphi\in C^{\infty}(M)$ and $dV$ is the volume element induced by the metric $g$. With respect to the weighted measure, the weighted $p$-Laplacian is defined as follows

$\Delta_{p,\varphi}u= \mathrm{div}(|\nabla u|^{p-2}\nabla u)-|\nabla u|^{(p-2)}\langle\nabla u, \nabla \varphi\rangle =\Delta_{p}u-|\nabla u|^{(p-2)}\langle\nabla u, \nabla \varphi\rangle.$

We are interested in the following nonlinear eigenvalue problem (the Dirichlet eigenvalue problem)

$ \begin{cases} \Delta_{p,\varphi}u+\lambda|u|^{p-2}u=0 \ \mathrm{in}\ \Omega,\\ u|_{\partial\Omega}=0. \end{cases}$ (1.1)

We recall that the first eigenvalue for the weighted $p$-Laplacian has the following variational characterisation

$\lambda_{p,\varphi}(\Omega) =\min\limits_{\substack{u\in W_{0}^{1,p}(\Omega)\\u \not\equiv 0}} \frac{\displaystyle\int_{\Omega}|\nabla u|^{p}e^{-\varphi} \mathrm{d}V}{\displaystyle\int_{\Omega}|u|^{p}e^{-\varphi}\mathrm{d}V}.$ (1.2)

The problems of partial differential equations involving weighted $p$-Laplacian have been studied by many mathematicians, see [1, 18], etc.. For more researches on eigenvalue problems, we refer the readers to [6, 15,16] etc..

For the following nonlinear eigenvalue problem

$ \begin{cases} \Delta_{p}f+\lambda|f|^{p-2}f=0 \ \mathrm{in}\ \Omega,\\ f|_{\partial\Omega}=0. \end{cases} $

The first eigenvalue associated with a Riemannian metric $g$ on a manifold $M$ has been extensively studied in recent mathematical literature, such as[7- 11],etc.. In [8]and [9], Kawohl-Fridman and Lefton-Wei used the coarea formula and the Cavalieri principle to estimate the lower bound of the first eigenvalue about this problem by the Cheeger constant

$\lambda_{1,p}(\Omega)\geq\left(\frac{h(\Omega)}{p}\right)^{p},$

where $h(\Omega)=\mathfrak{J}_{\infty}(\Omega)$ is the Cheeger constant of domain $\Omega$. This wonderful result inspires us to estimate the lower bounds of the first eigenvalues for the weighted $p$-Laplacian operator eigenvalue problems by the Cheeger constant.

In this paper, we use the coarea formula, the Cavalieri principle and the Federer-Fleming Theorem to investigate the first eigenvalues of problem $(1.1)$. We obtain the lower bounds estimations of the first eigenvalues for the weighted $p$-Laplace operator eigenvalue problems by the Cheeger constant and isoperimetric constant.

2 Main Results

In this section, our main goal is to estimate the lower bounds of the first eigenvalues for the weighted $p$-Laplacian eigenvalue problems on weighted manifolds. First, we recall some preliminary knowledge of the isoperimetric constant, Cavalieri's Principle and the coarea formula for later use.

Definition 2.1 Let $M$ be an $n$-dimensional Riemannian manifold with $n\geq2$. For each $\nu>1$, the ${\rm \nu-isoperimetric\ constant}\ of\ M,\ \mathfrak{J}_{\nu}(M)$, is defined to be the infimum

$\mathfrak{J}_{\nu}(M)=\inf\limits_{\Omega}\frac{A(\partial\Omega)}{V(\Omega)^{1-\frac{1}{\nu}}},$

where $\Omega$ varies over open submanifolds of $M$ possessing compact closure and $C^{\infty}$ boundary. If $\nu=\infty$, $\mathfrak{J}_{\infty}(M)$ is called the Cheeger constant, that is

$\mathfrak{J}_{\infty}(M)=\inf\limits_{\Omega}\frac{A(\partial\Omega)}{V(\Omega)}.$

Remark 2.2 As stated in [3], the fact that $\mathfrak{J}_{\nu}(M)>0$ is only possible for $n\leq \nu \leq \infty.$ Indeed, let $\nu<n$, and consider a small geodesic ball $B(x;\epsilon)$, with center $x\in M$ and radius $\epsilon>0$, for the isoperimetric quotient of $B(x;\epsilon)$,

$\lim\limits_{\epsilon\rightarrow 0}\frac{A(\partial\Omega)}{V(\Omega)^{1-\frac{1}{\nu}}}\sim\lim\limits_{\epsilon\rightarrow 0} {\rm const.} \epsilon^{\frac{n}{\nu}-1}=0.$

So it seems at first glance that one only has a discussion of isoperimetric constants for $\nu\geq n$=dim$M$.

Definition 2.3 Let $M$ be an $n$-dimensional Riemannian manifold, $n\geq2$. For each $\nu>1$, the Sobolev constant of $M$, $\mathfrak{S}_{\nu}(M)$, is defined to be the infimum

$\mathfrak{S}_{\nu}(M)=\inf\limits_{f}\frac{\|\nabla f\|_{1}}{\|f\|_{\frac{\nu}{\nu-1}}},$

where $f\in C_{0}^{\infty}(M)$.

The isoperimetric constant and the Sobolev constant have the following famous relationship:

Lemma 2.4 (The Federer-Fleming Theorem) The isoperimetric and Sobolev constants are equal, that is,

$\mathfrak{J}_{\nu}(M)=\mathfrak{S}_{\nu}(M).$ (2.1)

The detailed proof of the Federer-Fleming theorem can be found in [34] and [12]. This elegant result was first proven in [4] by Federer and Fleming, and in [12] independently by Maz'ya in $1960$.

Lemma 2.5 (see[3] The coarea Formula) Let $M$ be a $C^{n}$ Riemannian manifold, and let $\Phi: M\rightarrow \mathbb{R}$ be a $C^{n}$ function. Then for any measurable function $u: M\rightarrow \mathbb{R}$ that is everywhere nonnegative or is in $L^{1}(M)$, one has

$\int_{M}u|\nabla\Phi|\mathrm{d}V=\int_{R}\mathrm{d}V_{1}(y)\int_{\Phi^{-1}[y]}(u|_{\Phi^{-1}[y]})\mathrm{d}A.$

Lemma 2.6 (see [3] Cavalieri's Principle) Let $\nu$ be a measure on Borel sets in $[0, \infty]$, $\phi$ its indefinite integral, given by

$\phi(t)=\nu ([0, t))﹤+\infty,\ \forall\ t>0,$

$(\Omega, \Sigma, \mu)$ a measure space, and $u$ a nonnegative $\Sigma$-measurable function on $\Omega$. Then

$\int_{\Omega}\phi(u(x))\mathrm{d}\mu(x)=\int_{0}^{\infty}\mu({u>t})\mathrm{d}\nu(t)$

or equivalently

$\int_{\Omega}\mathrm{d}\mu(x)\int_{0}^{u(x)}\mathrm{d}\nu(t)=\int_{0}^{\infty}\mathrm{d}\nu(t)\int_{\Omega}I_{\{u>t\}}\mathrm{d}\mu.$

Using the coarea formula and the Cavalieri principle, we can get the following lower bound estimation of the first eigenvalue for the weighted $p$-Laplacian on weighted Riemannian manifold by the Cheeger constant.

Theorem 2.7 Let $\Omega$ be a connected domain with smooth boundary $\partial\Omega$ in an $n$-dimensional weighted Riemannian manifold $(M, g, d\mu)$. Assume $\lambda_{p,\varphi}(\Omega)$ is the first eigenvalue of problem $(1.1)$ for $\varphi\in C^{\infty}(\Omega)$. Then

$\lambda^{\frac{1}{p}}_{p,\varphi}(\Omega)\geq\frac{1}{p}\left(h(\Omega)-C_{\varphi}\right),$ (2.2)

where $C_{\varphi}=\max\limits_{x\in\Omega}|\nabla \varphi|$ and $h(\Omega)=\mathfrak{J}_{\infty}(\Omega)$ are the the Cheeger constant of domain $\Omega$.

Proof For any $u\in C^{\infty}_{0}(\Omega)$, set

$\Omega(t)=\{x\in\Omega:|u|^{p}e^{-\varphi}>t\}$

and

$\ \mathrm{V}(t)=\mathrm{V}(\Omega(t)),\ \mathrm{A}(t)=\mathrm{A}(\partial\Omega(t)).$

It follows from the Hölder inequality that

$\int_\Omega | \nabla ({u^p}{e^{ - \varphi }})|{\rm{d}}V \le p\int_\Omega | u{|^{p - 1}}|\nabla u|{e^{ - \varphi }}{\rm{d}}V + \int_\Omega | u{|^p}|\nabla \varphi |{e^{ - \varphi }}{\rm{d}}V \\ \le p{\{ \int_\Omega | u{|^p}{e^{ - \varphi }}{\rm{d}}V\} ^{\frac{{p - 1}}{p}}}{\{ \int_\Omega | \nabla u{|^p}{e^{ - \varphi }}{\rm{d}}V\} ^{\frac{1}{p}}} + \int_\Omega | u{|^p}|\nabla \varphi |{e^{ - \varphi }}{\rm{d}}V.$ (2.3)

From the coarea formula, the Cavalieri principle and the definition of Cheeger constant, we can get

$\int_\Omega | \nabla ({u^p}{e^{ - \varphi }})|{\rm{d}}V = \int_0^\infty {\rm{A}} (t){\rm{d}}t \\ = \int_0^\infty {\frac{{{\rm{A}}(t)}}{{{\rm{V}}(t)}}} {\rm{V}}(t){\rm{d}}t \ge h(\Omega )\int_0^\infty {\rm{V}} (t){\rm{d}}t \\ = h(\Omega )\int_0^\infty {\rm{d}} t\int_\Omega {{I_{\{ |u{|^p}{e^{ - \varphi }} > t\} }}} {\rm{d}}V \\ = h(\Omega )\int_\Omega {\rm{d}} V\int_0^{|u{|^p}{e^{ - \varphi }}} {\rm{d}} t \\ = h(\Omega )\int_\Omega | u{|^p}{e^{ - \varphi }}{\rm{d}}V,$

since $C^{\infty}_{0}(\Omega)$ is dense in $ W_{0}^{1,p}(\Omega)$, the above relation holds also for any $u\in W_{0}^{1,p}(\Omega)$, which together with $(2.3)$ implies

$\frac{\{\displaystyle\int_{\Omega}|\nabla u|^{p}e^{-\varphi} \mathrm{d}V\}^{\frac{1}{p}}}{\{\displaystyle\int_{\Omega}| u|^{p}e^{-\varphi}\mathrm{d}V\}^{\frac{1}{p}}} \geq\frac{1}{p}\left(h(\Omega)-C_{\varphi}\right),$

this inequality and $(1.2)$ imply

$\lambda^{\frac{1}{p}}_{p,\varphi}(\Omega)=\min\limits_{\substack{u\in W_{0}^{1,p}(\Omega)\\u \not\equiv 0}}\frac{\{\displaystyle\int_{\Omega}|\nabla u|^{p}e^{-\varphi} \mathrm{d}V\}^{\frac{1}{p}}}{\{\displaystyle\int_{\Omega}| u|^{p}e^{-\varphi}\mathrm{d}V\}^{\frac{1}{p}}} \geq\frac{1}{p}\left(h(\Omega)-C_{\varphi}\right),$

which completes the proof.

Using the Federer-Fleming theorem, we can get the following lower bound estimation of the first eigenvalue by the isoperimetric constant.

Theorem 2.8 Assume that $\Omega$ satisfies the conditions of Theorem $2.7$, and the isoperimetric constant $\mathfrak{J}_{\nu}(\Omega)$ is positive for some $\nu>1$. Then

$\lambda^{\frac{1}{p}}_{p, \varphi}(\Omega) \geq\frac{1}{p}\left(\frac{\mathfrak{J}_{\nu}(\Omega)}{V(\Omega)^{\frac{1}{\nu}}}-C_{\varphi}\right).$ (2.4)

Proof For any $u\in W^{1,p}_{0}(\Omega)$, let $f(u)=|u|^{p-1}ue^{-\varphi}$, then, we first have by the Hölder inequality that

$\int_{\Omega}|f|\mathrm{d}V\leq \left\{\int_{\Omega}|f|^\frac{\nu}{\nu-1}\mathrm{d}V\right\}^\frac{\nu-1}{\nu}\left\{\int_{\Omega}1\mathrm{d}V\right\}^\frac{1}{\nu} =\left\{\int_{\Omega}|f|^\frac{\nu}{\nu-1}\mathrm{d}V\right\}^\frac{\nu-1}{\nu}V(\Omega)^\frac{1}{\nu}.$ (2.5)

According to the Federer-Fleming theorem $(2.1)$ and the definition of the sobolev constant, we deduce

$\mathfrak{J}_{\nu}(\Omega)\left\{\int_{\Omega}|f|^\frac{\nu}{\nu-1}\mathrm{d}V\right\}^\frac{\nu-1}{\nu}\leq\int_{\Omega}|\nabla f|\mathrm{d}V,$

which together with $(2.5)$ gives us

$\int_{\Omega}|f|\mathrm{d}V\leq\frac{V(\Omega)^{\frac{1}{\nu}}}{\mathfrak{J}_{\nu}(\Omega)}\int_{\Omega}|\nabla f|\mathrm{d}V.$ (2.6)

Again, by the Hölder inequality, we have

$\int_\Omega | \nabla f|{\rm{d}}V = p\int_\Omega | u{|^{p - 1}}|\nabla u|{e^{ - \varphi }}{\rm{d}}V + \int_\Omega | u{|^p}|\nabla \varphi |{e^{ - \varphi }}{\rm{d}}V \\ \le {\rm{ }}p{\left\{ {\int_\Omega | u{|^p}{e^{ - \varphi }}{\rm{d}}V} \right\}^{\frac{{p - 1}}{p}}}{\left\{ {\int_\Omega | \nabla u{|^p}{e^{ - \varphi }}{\rm{d}}V} \right\}^{\frac{1}{p}}} + \int_\Omega | u{|^p}|\nabla \varphi |{e^{ - \varphi }}{\rm{d}}V.$ (2.7)

The combination of $(2.6)$ and $(2.7)$ can yield

$\int_\Omega | u{|^p}{e^{ - \varphi }}{\rm{d}}V \\ \le {\rm{ }}\frac{{V{{(\Omega )}^{\frac{1}{\nu }}}}}{{{_\nu }(\Omega )}}\left\{ {p{{\left\{ {\int_\Omega | u{|^p}{e^{ - \varphi }}{\rm{d}}V} \right\}}^{\frac{{p - 1}}{p}}}{{\left\{ {\int_\Omega | \nabla u{|^p}{e^{ - \varphi }}{\rm{d}}V} \right\}}^{\frac{1}{p}}} + \int_\Omega | u{|^p}|\nabla \varphi |{e^{ - \varphi }}{\rm{d}}V} \right\},$

this inequality implies

$\frac{\{\displaystyle\int_{\Omega}|\nabla u|^{p}e^{-\varphi} \mathrm{d}V\}^{\frac{1}{p}}}{\{\displaystyle\int_{\Omega}| u|^{p}e^{-\varphi}\mathrm{d}V\}^{\frac{1}{p}}}\geq\frac{1}{p}\left(\frac{\mathfrak{J}_{\nu}(\Omega)}{V(\Omega)^{\frac{1}{\nu}}}-C_{\varphi}\right),$

from this inequality and $(1.2)$, it is obvious that

$\lambda^{\frac{1}{p}}_{p,\varphi}(\Omega)=\min\limits_{\substack{u\in W_{0}^{1,p}(\Omega)\\u \not\equiv 0}}\frac{\{\displaystyle\int_{\Omega}|\nabla u|^{p}e^{-\varphi} \mathrm{d}V\}^{\frac{1}{p}}}{\{\displaystyle\int_{\Omega}| u|^{p}e^{-\varphi}\mathrm{d}V\}^{\frac{1}{p}}}\geq\frac{1}{p}\left(\frac{\mathfrak{J}_{\nu}(\Omega)}{V(\Omega)^{\frac{1}{\nu}}}-C_{\varphi}\right),$

which completes the proof.

Remark 2.9 It is obvious that, if we take $\nu=\infty$, then from $(2.4)$ we have

$\lambda^{\frac{1}{p}}_{p,\varphi}(\Omega)=\min\limits_{\substack{u\in W_{0}^{1,p}(\Omega)\\ u \not\equiv 0}}\frac{\{\displaystyle\int_{\Omega}|\nabla u|^{p}e^{-\varphi} \mathrm{d}V\}^{\frac{1}{p}}}{\{\displaystyle\int_{\Omega}| u|^{p}e^{-\varphi}\mathrm{d}V\}^{\frac{1}{p}}} \\ \geq \lim\limits_{\nu\rightarrow\infty}\frac{1}{p}\left(\frac{\mathfrak{J}_{\nu}(\Omega)}{V(\Omega)^{\frac{1}{\nu}}} -C_{\varphi}\right) =\frac{1}{p}\left(h(\Omega)-C_{\varphi}\right).$

Corollary 2.10 Let $\Omega$ be a connected domain with smooth boundary $\partial\Omega$ in the Euclidean space $\mathbb{R}^{n}$. Then

$\lambda^{\frac{1}{p}}_{p,\varphi}(\Omega)\geq \frac{n}{p}\left(\left(\frac{\omega_{n}}{V(\Omega)}\right)^{\frac{1}{n}}-nC_{\varphi}\right),$ (2.8)

where $\omega_{n}$ denotes the volume of the unit ball in $R^{n}$.

Proof It is well known that

$\mathfrak{J}_{n}(\Omega)=n\omega_{n}^{\frac{1}{n}}$

for any domain $\Omega\subseteq\mathbb{R}^{n}$, where $\omega_{n}$ denotes the volume of the unit ball in $\mathbb{R}^{n}$. From this fact and $(2.4)$, we can get

$\lambda^{\frac{1}{p}}_{p,\varphi}(\Omega)\geq \frac{n}{p}\left(\left(\frac{\omega_{n}}{V(\Omega)}\right)^{\frac{1}{n}}-nC_{\varphi}\right),$

which completes the proof.

Example 1 If $\Omega=B_{n}(R)$ is a ball in $\mathbb{R}^{n}$ with radius R, then the volume of $\Omega$ is $V(\Omega)=\omega_{n}R^{n}$, and we can get

$\lambda^{\frac{1}{p}}_{p,\varphi}(\Omega)\geq\frac{n}{p}\left(\frac{1}{R}-nC_{\varphi}\right)$

directly by $(2.8)$. Since any ball is trivial Cheeger set (see [2]), by simply calculation, we can obtain

$h(\Omega)=\frac{A(\partial\Omega)}{V(\Omega)}=\frac{n}{R}$

from inequality (2.2), thus, we can get the same inequality as above.

Example 2 Let $S^{n}$ be a unit sphere with sectional curvature $1$, and $\Omega\subseteq S^{n}$ (small enough) be a relatively compact domain with smooth boundary $\partial\Omega$. Then the Ricci curvature of $S^{n}$ is $n-1$. From [17,Theorem 1.4] , we know that for any connected domain $\Omega\subset S^{n},\ n=2,3,4,5$,

$\frac{A(\partial\Omega)}{V(\Omega)^{1-\frac{1}{n}}}\geq n\omega_{n}^{\frac{1}{n}}\left(1-\tau V(\Omega)^{\frac{2}{n}}\right)^{\frac{1}{n}},$

where $\tau=\frac{n(n-1)}{2(n+2)\omega_{n}^{\frac{2}{n}}}$. According to Definition $2.1$, we derive

$\mathfrak{J}_{n}(\Omega)\geq n\omega_{n}^{\frac{1}{n}}\left(1-\tau V(\Omega)^{\frac{2}{n}}\right)^{\frac{1}{n}}.$

Then from $(2.4)$, we have

$\lambda^{\frac{1}{p}}_{p,\varphi}(\Omega)\geq\frac{1}{p}\left(\frac{n\omega_{n}^{\frac{1}{n}}\left(1-\tau V(\Omega)^{\frac{2}{n}}\right)^{\frac{1}{n}}}{V(\Omega)^{\frac{1}{n}}}-C_{\varphi}\right).$
References
[1] Anh C T, Ke T D. On quasilinear parabolic equations involving weighted p-Laplacian operators[J]. Nonlinear Difier. Equ. Appl., 2010, 17: 195–212. DOI:10.1007/s00030-009-0048-3
[2] Caselles V, Chambolle A, Novaga M. Uniqueness of the Cheeger set of a convex body[J]. Paciflc J.Math., 2007, 232(1): 77–90. DOI:10.2140/pjm
[3] Chavel I. Isoperimetric Inequalities[M]. Cambridge Tracts in Math. 145, Cambridge: CambridgeUniv. Press, 2001.
[4] Federer H, Fleming W H. Normal integral currents[J]. Ann. Math., 1960, 72: 458–520. DOI:10.2307/1970227
[5] Huang G Y, Li X X, Gao L F. Universal bounds on eigenvalues of the buckling problem on spherical domains[J]. J. Math., 2011, 31(5): 840–846.
[6] Huang G Y, Zhang C, Zhang J. Low order eigenvalues for operators in divergence form with a weight[J]. J. Math., 2013, 33(1): 1–5.
[7] Huang Y X. Existence of positive solution for a class of the p-Laplace equations[J]. . Austral. Math. Soc. Ser., B, 1994, 36: 249–264. DOI:10.1017/S0334270000010390
[8] Kawohl B, Fridman V. Isoperimetric estimates for the flrst eigenvalue of the p-Laplace operator and the Cheeger constant[J]. Comment. Math. Univ. Carolinae., 2003, 44(4): 659–667.
[9] Lefton L, wei D. Neumerical approximation of the flrst eigenpair of the p-Laplacian using flnite elements and the penalty method[J]. Numer. Funct. Optim. Carolinae., 1997, 18: 389–399. DOI:10.1080/01630569708816767
[10] Ly I. The flrst eigenvalue for the p-Laplacian operator[J]. JIPAM. J. Inequ. Pure Appl. Math., 2005, 6(3): 12pp–Article 91.
[11] Matei A M. First eigenvalue for the p-Laplace operator[J]. Nonl. Anal., 2000, 39(8): 1051–1068. DOI:10.1016/S0362-546X(98)00266-1
[12] Maz’ya V G. Classes of domains and embeding theorems for functional spaces (in Russian)[J]. Dokl. Acad. Nauk. SSSR., 1960, 133: 527–530.
[13] Ros A. Compact hypersurfaces with constant higher order mean curvatures[J]. Rev. Mat. Iberoamericana., 1987, 3: 447–453.
[14] Walter W. Sturm-Liouville theory for the radial ¢p-operator[J]. Math. Z., 1998, 227: 175–185. DOI:10.1007/PL00004362
[15] Wang L H. Eigenvalues of weighted p-Laplacian[J]. Pro. Amer. Math. Soc., 2013, 141: 4357–4370. DOI:10.1090/proc/2013-141-12
[16] Wang L F, Zhu Y P. A sharp gradient estimate for the weighted p-Laplacian[J]. Appl. Math. J. Chinese Univ., 2012, 27: 462–474. DOI:10.1007/s11766-012-2829-4
[17] Wei S, Zhu M. Sharp isoperimetric inequalities and sphere theorems[J]. Paciflc J. Math., 2005, 220(1): 183–195. DOI:10.2140/pjm
[18] Yin J X, Wang C P. Evolutionary weighted p-Laplacian with boundary degeneray[J]. J. Difi. Equ., 2007, 237: 421–445. DOI:10.1016/j.jde.2007.03.012