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Abstract: In this paper, we estimate the lower bounds of the first eigenvalues for the weighted

p-Laplacian on manifolds. By using the coarea formula, the Cavalieri principle and the Federer-

Fleming theorem, we obtain the estimation of the lower bounds for the first eigenvalues by the

Cheeger constant or the isoperimetric constant.
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1 Introduction

Let Ω be a bounded domain with smooth boundary ∂Ω in an n-dimensional Riemannian
manifold (M, g). The p-Laplacian is defined by

∆p : W 1,p
0 (Ω) 7→ W−1,q(Ω),

u 7→ ∆pu = div(|∇u|p−2∇u),

where W 1,p
0 (Ω) is the Sobolev space given by the closure of C∞

0 (Ω) with norm

‖u‖p
1,p =

∫

Ω

|u|pdV +
∫

Ω

|∇u|pdV,

and W−1,q(Ω) is the dual space of W 1,p
0 (Ω) and 1 < p, q < ∞, 1

p
+ 1

q
= 1. As a generalization

of the usual Laplacian, the p-Laplacian is widely used in many subjects, especially ∆p

models the non-Newtonian fluids in physics. It describes dilatant fluids when p > 2 and
pseudoplastics when p < 2, whereas p = 2 corresponds to Newtonian fluids. The operator
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∆p with p 6= 2 also appears in many other applications, such as reaction-diffusion problems,
flow through porous media, nonlinear elasticity, etc., see [14] for more details.

Let (M, g, dµ) be a weighted manifold, that is, a Riemannian manifold (M, g) endowed
with a weighted volume form dµ = e−ϕdV , where ϕ ∈ C∞(M) and dV is the volume element
induced by the metric g. With respect to the weighted measure, the weighted p-Laplacian
is defined as follows

∆p,ϕu = div(|∇u|p−2∇u)− |∇u|(p−2)〈∇u,∇ϕ〉 = ∆pu− |∇u|(p−2)〈∇u,∇ϕ〉.

We are interested in the following nonlinear eigenvalue problem (the Dirichlet eigenvalue
problem) {

∆p,ϕu + λ|u|p−2u = 0 in Ω,

u|∂Ω = 0.
(1.1)

We recall that the first eigenvalue for the weighted p-Laplacian has the following variational
characterisation

λp,ϕ(Ω) = min
u∈W 1,p

0 (Ω)
u 6≡0

∫

Ω

|∇u|pe−ϕdV
∫

Ω

|u|pe−ϕdV

. (1.2)

The problems of partial differential equations involving weighted p-Laplacian have been stud-
ied by many mathematicians, see [1, 18], etc.. For more researches on eigenvalue problems,
we refer the readers to [6, 15, 16] etc..

For the following nonlinear eigenvalue problem

{
∆pf + λ|f |p−2f = 0 in Ω,

f |∂Ω = 0.

The first eigenvalue associated with a Riemannian metric g on a manifold M has been
extensively studied in recent mathematical literature, such as [7–11], etc.. In [8] and [9],
Kawohl-Fridman and Lefton-Wei used the coarea formula and the Cavalieri principle to
estimate the lower bound of the first eigenvalue about this problem by the Cheeger constant

λ1,p(Ω) ≥
(

h(Ω)
p

)p

,

where h(Ω) = J∞(Ω) is the Cheeger constant of domain Ω. This wonderful result inspires us
to estimate the lower bounds of the first eigenvalues for the weighted p-Laplacian operator
eigenvalue problems by the Cheeger constant.

In this paper, we use the coarea formula, the Cavalieri principle and the Federer-Fleming
Theorem to investigate the first eigenvalues of problem (1.1). We obtain the lower bounds
estimations of the first eigenvalues for the weighted p-Laplace operator eigenvalue problems
by the Cheeger constant and isoperimetric constant.
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2 Main Results

In this section, our main goal is to estimate the lower bounds of the first eigenvalues for
the weighted p-Laplacian eigenvalue problems on weighted manifolds. First, we recall some
preliminary knowledge of the isoperimetric constant, Cavalieri’s Principle and the coarea
formula for later use.

Definition 2.1 Let M be an n-dimensional Riemannian manifold with n ≥ 2. For each
ν > 1, the ν − isoperimetric constant of M, Jν(M), is defined to be the infimum

Jν(M) = inf
Ω

A(∂Ω)
V (Ω)1− 1

ν

,

where Ω varies over open submanifolds of M possessing compact closure and C∞ boundary.
If ν = ∞, J∞(M) is called the Cheeger constant, that is

J∞(M) = inf
Ω

A(∂Ω)
V (Ω)

.

Remark 2.2 As stated in [3], the fact that Jν(M) > 0 is only possible for n ≤ ν ≤ ∞.

Indeed, let ν < n, and consider a small geodesic ball B(x; ε), with center x ∈ M and radius
ε > 0, for the isoperimetric quotient of B(x; ε),

lim
ε→0

A(∂Ω)
V (Ω)1− 1

ν

∼ lim
ε→0

const. ε
n
ν−1 = 0.

So it seems at first glance that one only has a discussion of isoperimetric constants for
ν ≥ n=dimM .

Definition 2.3 Let M be an n-dimensional Riemannian manifold, n ≥ 2. For each
ν > 1, the Sobolev constant of M , Sν(M), is defined to be the infimum

Sν(M) = inf
f

‖∇f‖1

‖f‖ ν
ν−1

,

where f ∈ C∞
0 (M).

The isoperimetric constant and the Sobolev constant have the following famous rela-
tionship:

Lemma 2.4 (The Federer-Fleming Theorem) The isoperimetric and Sobolev constants
are equal, that is,

Jν(M) = Sν(M). (2.1)

The detailed proof of the Federer-Fleming theorem can be found in [3, 4] and [12]. This
elegant result was first proven in [4] by Federer and Fleming, and in [12] independently by
Maz’ya in 1960.

Lemma 2.5 (see [3] The coarea Formula) Let M be a Cn Riemannian manifold, and
let Φ : M → R be a Cn function. Then for any measurable function u : M → R that is
everywhere nonnegative or is in L1(M), one has

∫

M

u|∇Φ|dV =
∫

R

dV1(y)
∫

Φ−1[y]

(u|Φ−1[y])dA.
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Lemma 2.6 (see [3] Cavalieri’s Principle) Let ν be a measure on Borel sets in [0,∞], φ

its indefinite integral, given by

φ(t) = ν([0, t)) < +∞, ∀ t > 0,

(Ω,Σ, µ) a measure space, and u a nonnegative Σ-measurable function on Ω. Then

∫

Ω

φ(u(x))dµ(x) =
∫ ∞

0

µ(u > t)dν(t)

or equivalently
∫

Ω

dµ(x)
∫ u(x)

0

dν(t) =
∫ ∞

0

dν(t)
∫

Ω

I{u>t}dµ.

Using the coarea formula and the Cavalieri principle, we can get the following lower
bound estimation of the first eigenvalue for the weighted p-Laplacian on weighted Rieman-
nian manifold by the Cheeger constant.

Theorem 2.7 Let Ω be a connected domain with smooth boundary ∂Ω in an n-
dimensional weighted Riemannian manifold (M, g, dµ). Assume λp,ϕ(Ω) is the first eigenvalue
of problem (1.1) for ϕ ∈ C∞(Ω). Then

λ
1
p
p,ϕ(Ω) ≥ 1

p
(h(Ω)− Cϕ) , (2.2)

where Cϕ = max
x∈Ω

|∇ϕ| and h(Ω) = J∞(Ω) are the the Cheeger constant of domain Ω.

Proof For any u ∈ C∞
0 (Ω), set

Ω(t) = {x ∈ Ω : |u|pe−ϕ > t}

and

V(t) = V(Ω(t)), A(t) = A(∂Ω(t)).

It follows from the Hölder inequality that

∫

Ω

|∇(upe−ϕ)|dV ≤ p

∫

Ω

|u|p−1|∇u|e−ϕdV +
∫

Ω

|u|p|∇ϕ|e−ϕdV

≤p

{∫

Ω

|u|pe−ϕdV

} p−1
p

{∫

Ω

|∇u|pe−ϕdV

} 1
p

+
∫

Ω

|u|p|∇ϕ|e−ϕdV. (2.3)

From the coarea formula, the Cavalieri principle and the definition of Cheeger constant, we



No. 2 Isoperimetric estimate of the first eigenvalues for the weighted p-Laplacian on manifolds 281

can get
∫

Ω

|∇(upe−ϕ)|dV =
∫ ∞

0

A(t)dt

=
∫ ∞

0

A(t)
V(t)

V(t)dt ≥ h(Ω)
∫ ∞

0

V(t)dt

=h(Ω)
∫ ∞

0

dt

∫

Ω

I{|u|pe−ϕ>t}dV

=h(Ω)
∫

Ω

dV

∫ |u|pe−ϕ

0

dt

=h(Ω)
∫

Ω

|u|pe−ϕdV,

since C∞
0 (Ω) is dense in W 1,p

0 (Ω), the above relation holds also for any u ∈ W 1,p
0 (Ω), which

together with (2.3) implies

{
∫

Ω

|∇u|pe−ϕdV } 1
p

{
∫

Ω

|u|pe−ϕdV } 1
p

≥ 1
p

(h(Ω)− Cϕ) ,

this inequality and (1.2) imply

λ
1
p
p,ϕ(Ω) = min

u∈W 1,p
0 (Ω)

u 6≡0

{
∫

Ω

|∇u|pe−ϕdV } 1
p

{
∫

Ω

|u|pe−ϕdV } 1
p

≥ 1
p

(h(Ω)− Cϕ) ,

which completes the proof.
Using the Federer-Fleming theorem, we can get the following lower bound estimation

of the first eigenvalue by the isoperimetric constant.
Theorem 2.8 Assume that Ω satisfies the conditions of Theorem 2.7, and the isoperi-

metric constant Jν(Ω) is positive for some ν > 1. Then

λ
1
p
p,ϕ(Ω) ≥ 1

p

(
Jν(Ω)
V (Ω) 1

ν

− Cϕ

)
. (2.4)

Proof For any u ∈ W 1,p
0 (Ω), let f(u) = |u|p−1ue−ϕ, then, we first have by the Hölder

inequality that

∫

Ω

|f |dV ≤
{∫

Ω

|f | ν
ν−1 dV

} ν−1
ν

{∫

Ω

1dV

} 1
ν

=
{∫

Ω

|f | ν
ν−1 dV

} ν−1
ν

V (Ω)
1
ν . (2.5)

According to the Federer-Fleming theorem (2.1) and the definition of the sobolev constant,
we deduce

Jν(Ω)
{∫

Ω

|f | ν
ν−1 dV

} ν−1
ν

≤
∫

Ω

|∇f |dV,
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which together with (2.5) gives us
∫

Ω

|f |dV ≤ V (Ω)
1
ν

Jν(Ω)

∫

Ω

|∇f |dV. (2.6)

Again, by the Hölder inequality, we have
∫

Ω

|∇f |dV = p

∫

Ω

|u|p−1|∇u|e−ϕdV +
∫

Ω

|u|p|∇ϕ|e−ϕdV

≤p

{∫

Ω

|u|pe−ϕdV

} p−1
p

{∫

Ω

|∇u|pe−ϕdV

} 1
p

+
∫

Ω

|u|p|∇ϕ|e−ϕdV. (2.7)

The combination of (2.6) and (2.7) can yield
∫

Ω

|u|pe−ϕdV

≤V (Ω)
1
ν

Jν(Ω)

{
p

{∫

Ω

|u|pe−ϕdV

} p−1
p

{∫

Ω

|∇u|pe−ϕdV

} 1
p

+
∫

Ω

|u|p|∇ϕ|e−ϕdV

}
,

this inequality implies

{
∫

Ω

|∇u|pe−ϕdV } 1
p

{
∫

Ω

|u|pe−ϕdV } 1
p

≥ 1
p

(
Jν(Ω)
V (Ω) 1

ν

− Cϕ

)
,

from this inequality and (1.2), it is obvious that

λ
1
p
p,ϕ(Ω) = min

u∈W 1,p
0 (Ω)

u 6≡0

{
∫

Ω

|∇u|pe−ϕdV } 1
p

{
∫

Ω

|u|pe−ϕdV } 1
p

≥ 1
p

(
Jν(Ω)
V (Ω) 1

ν

− Cϕ

)
,

which completes the proof.
Remark 2.9 It is obvious that, if we take ν = ∞, then from (2.4) we have

λ
1
p
p,ϕ(Ω) = min

u∈W 1,p
0 (Ω)

u 6≡0

{
∫

Ω

|∇u|pe−ϕdV } 1
p

{
∫

Ω

|u|pe−ϕdV } 1
p

≥ lim
ν→∞

1
p

(
Jν(Ω)
V (Ω) 1

ν

− Cϕ

)
=

1
p

(h(Ω)− Cϕ) .

Corollary 2.10 Let Ω be a connected domain with smooth boundary ∂Ω in the
Euclidean space Rn. Then

λ
1
p
p,ϕ(Ω) ≥ n

p

((
ωn

V (Ω)

) 1
n

− nCϕ

)
, (2.8)
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where ωn denotes the volume of the unit ball in Rn.
Proof It is well known that

Jn(Ω) = nω
1
n
n

for any domain Ω ⊆ Rn, where ωn denotes the volume of the unit ball in Rn. From this fact
and (2.4), we can get

λ
1
p
p,ϕ(Ω) ≥ n

p

((
ωn

V (Ω)

) 1
n

− nCϕ

)
,

which completes the proof.
Example 1 If Ω = Bn(R) is a ball in Rn with radius R, then the volume of Ω is

V (Ω) = ωnRn, and we can get

λ
1
p
p,ϕ(Ω) ≥ n

p

(
1
R
− nCϕ

)

directly by (2.8). Since any ball is trivial Cheeger set (see [2]), by simply calculation, we can
obtain

h(Ω) =
A(∂Ω)
V (Ω)

=
n

R

from inequality (2.2), thus, we can get the same inequality as above.
Example 2 Let Sn be a unit sphere with sectional curvature 1, and Ω ⊆ Sn (small

enough) be a relatively compact domain with smooth boundary ∂Ω. Then the Ricci curvature
of Sn is n−1. From [17, Theorem 1.4], we know that for any connected domain Ω ⊂ Sn, n =
2, 3, 4, 5,

A(∂Ω)
V (Ω)1− 1

n

≥ nω
1
n
n

(
1− τV (Ω)

2
n

) 1
n

,

where τ = n(n−1)

2(n+2)ω
2
n
n

. According to Definition 2.1, we derive

Jn(Ω) ≥ nω
1
n
n

(
1− τV (Ω)

2
n

) 1
n

.

Then from (2.4), we have

λ
1
p
p,ϕ(Ω) ≥ 1

p


nω

1
n
n

(
1− τV (Ω)

2
n

) 1
n

V (Ω) 1
n

− Cϕ


 .
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加权流形上加权p-Laplace特征值问题的第一特征值下界估计

张留伟1,2,赵 艳3,4

(1.同济大学数学系, 上海 200092)

(2.信阳师范学院数学系, 河南信阳 464000)

(3.大连理工大学数学科学学院, 辽宁大连 116024)

(4.河南轻工业学校公共课数学部, 河南郑州 450000)

摘要: 本文研究了加权流形上加权p-Laplacian特征值问题的第一特征值下界估计的问题. 利用余面积

公式、Cavalieri原理以及Federer-Fleming定理, 获得了由Cheeger常数或等周常数确定的第一特征值的下界

估计.
关键词: 加权p-Laplacian; 加权流形; 等周常数; 第一特征值; 下界
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