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Abstract: In this paper, we estimate the lower bounds of the first eigenvalues for the weighted
p-Laplacian on manifolds. By using the coarea formula, the Cavalieri principle and the Federer-
Fleming theorem, we obtain the estimation of the lower bounds for the first eigenvalues by the
Cheeger constant or the isoperimetric constant.
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1 Introduction

Let Q be a bounded domain with smooth boundary 9€2 in an n-dimensional Riemannian
manifold (M, g). The p-Laplacian is defined by
Ay WoP(Q) = WH1(Q),
u— Apu = div(|VulP~?Vu),

where W, ? () is the Sobolev space given by the closure of C5°(Q) with norm

hl?, = / ulPdv / Vulrav,
Q Q

and W~14(€Q) is the dual space of W, (Q) and 1 < p, q < oo, % —1—5 = 1. As a generalization
of the usual Laplacian, the p-Laplacian is widely used in many subjects, especially A,
models the non-Newtonian fluids in physics. It describes dilatant fluids when p > 2 and

pseudoplastics when p < 2, whereas p = 2 corresponds to Newtonian fluids. The operator
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A, with p # 2 also appears in many other applications, such as reaction-diffusion problems,
flow through porous media, nonlinear elasticity, etc., see [14] for more details.

Let (M, g,du) be a weighted manifold, that is, a Riemannian manifold (M, g) endowed
with a weighted volume form dp = e=%?dV, where ¢ € C°°(M) and dV is the volume element
induced by the metric g. With respect to the weighted measure, the weighted p-Laplacian

is defined as follows
A, pu = div(|VulP72Vu) — [Vu| P~ (Vu, Vo) = Ayu — [Vu|P=2(Vu, V).

We are interested in the following nonlinear eigenvalue problem (the Dirichlet eigenvalue

problem)

(1.1)

Apou+ AulP~?u=0in Q,
U’aQ = 0.

We recall that the first eigenvalue for the weighted p-Laplacian has the following variational

/|Vupe_“"dV
App(2) = min R —
“EVZ‘;O(Q) /|u|pe_“”dV

Q

The problems of partial differential equations involving weighted p-Laplacian have been stud-

characterisation

(1.2)

ied by many mathematicians, see [1, 18], etc.. For more researches on eigenvalue problems,
we refer the readers to [6, 15, 16] etc..

For the following nonlinear eigenvalue problem

{Apf+)\f|p‘2f —0in Q,
flaa = 0.

The first eigenvalue associated with a Riemannian metric g on a manifold M has been
extensively studied in recent mathematical literature, such as [7-11], etc.. In [8] and [9],
Kawohl-Fridman and Lefton-Wei used the coarea formula and the Cavalieri principle to

estimate the lower bound of the first eigenvalue about this problem by the Cheeger constant

Ly

p

Apl9) = (

where h(Q) = Jo () is the Cheeger constant of domain 2. This wonderful result inspires us
to estimate the lower bounds of the first eigenvalues for the weighted p-Laplacian operator
eigenvalue problems by the Cheeger constant.

In this paper, we use the coarea formula, the Cavalieri principle and the Federer-Fleming
Theorem to investigate the first eigenvalues of problem (1.1). We obtain the lower bounds
estimations of the first eigenvalues for the weighted p-Laplace operator eigenvalue problems

by the Cheeger constant and isoperimetric constant.
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2 Main Results

In this section, our main goal is to estimate the lower bounds of the first eigenvalues for
the weighted p-Laplacian eigenvalue problems on weighted manifolds. First, we recall some
preliminary knowledge of the isoperimetric constant, Cavalieri’s Principle and the coarea
formula for later use.

Definition 2.1 Let M be an n-dimensional Riemannian manifold with n > 2. For each
v > 1, the v — isoperimetric constant of M, J,(M), is defined to be the infimum

A(09Q2
3, (M) = inf 7( )1
Q V(Q)l—;
where 2 varies over open submanifolds of M possessing compact closure and C'*° boundary.
If v = 00, Joo (M) is called the Cheeger constant, that is
A(0Q)
V(Q)
Remark 2.2 As stated in [3], the fact that J, (M) > 0 is only possible for n < v < oco.

Indeed, let v < n, and consider a small geodesic ball B(z;¢), with center x € M and radius

)

Joo(M) = 1?2f

€ > 0, for the isoperimetric quotient of B(x;e),

im Lﬂ)l ~ lim const. e¥ ! = 0.
—0V()=v o0
So it seems at first glance that one only has a discussion of isoperimetric constants for
v > n=dimM.
Definition 2.3 Let M be an n-dimensional Riemannian manifold, n > 2. For each
v > 1, the Sobolev constant of M, &, (M), is defined to be the infimum

V£l
1Al

v—1

S, (M) = irflf

where f € C5°(M).

The isoperimetric constant and the Sobolev constant have the following famous rela-
tionship:

Lemma 2.4 (The Federer-Fleming Theorem) The isoperimetric and Sobolev constants

are equal, that is,
3,(M) = &, (M), (2.1)
The detailed proof of the Federer-Fleming theorem can be found in [3, 4] and [12]. This
elegant result was first proven in [4] by Federer and Fleming, and in [12] independently by
Maz’ya in 1960.
Lemma 2.5 (see [3] The coarea Formula) Let M be a C™ Riemannian manifold, and
let ® : M — R be a C" function. Then for any measurable function v : M — R that is

everywhere nonnegative or is in L'(M), one has

/ W[ VB[V / dVi(y) / (ul 1)) A,
M R —1[y]
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Lemma 2.6 (see [3] Cavalieri’s Principle) Let v be a measure on Borel sets in [0, o], ¢

its indefinite integral, given by
o(t) = v([0,t)) < 400, V>0,

(©,3, u) a measure space, and u a nonnegative 3-measurable function on €. Then

/Q olu(z))du(z) = / " > v ()

or equivalently

/Q du(z) /O e du(t) = /0 T ) /Q sy dpi.

Using the coarea formula and the Cavalieri principle, we can get the following lower
bound estimation of the first eigenvalue for the weighted p-Laplacian on weighted Rieman-
nian manifold by the Cheeger constant.

Theorem 2.7 Let 2 be a connected domain with smooth boundary 92 in an n-

dimensional weighted Riemannian manifold (M, g, dp). Assume A, ,(£2) is the first eigenvalue
of problem (1.1) for ¢ € C*°(€2). Then

Moo(©) > = (h(©Q) - C,), (2.2)

==

where C, = max |Vl and h(Q) = Joo () are the the Cheeger constant of domain €.
TE
Proof For any u € C5°(2), set

Qt) ={x € Q:|ulPe™? >t}

and

It follows from the Holder inequality that

/V(upe“”)|dV§p/ |up1|Vu|e“"dV+/ |ulP|Vle™?dV
Q Q Q

<p{/ |u|pe_9"dV} ’ {/ |vu|Pe—¢dv}p +/ ul? |V plePdV. (2.3)
Q Q Q

From the coarea formula, the Cavalieri principle and the definition of Cheeger constant, we
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can get
/Q IV (uPe?)|dV = /0 A(t)dt
= /0 \A/g;\/(t)dtz h(Q) /0 V(t)dt

_h(Q>/ dt/I{lupenp>t}dV
0 Q

|ulPe=®
:h(Q)/dV/ dt
Q 0

=h(Q) / |u|Pe=*dV,
Q

since Cg°(Q) is dense in W, ”(Q), the above relation holds also for any u € W,"*(Q), which
together with (2.3) implies

{/ |Vu\pe_“’dV}%
Q2 >

([ peeavy
Q

(h(Q) = C),

this inequality and (1.2) imply

) {/ |Vu|pe_‘pdV}%
Q

Mo(2) = min

U ([ upecavy
Q

which completes the proof.

Using the Federer-Fleming theorem, we can get the following lower bound estimation
of the first eigenvalue by the isoperimetric constant.

Theorem 2.8 Assume that (2 satisfies the conditions of Theorem 2.7, and the isoperi-

metric constant J, () is positive for some v > 1. Then

1 173,09

Proof For any u € Wy *(Q), let f(u) = |u[P~'ue%, then, we first have by the Holder
inequality that

/Q|f|dV < {/Q|f|v”1dV}VU1 {/va}i = {/Q f|v”1dV}Vyl V(Q)». (2.5)

According to the Federer-Fleming theorem (2.1) and the definition of the sobolev constant,

we deduce

v—1

&(W{/ﬁlf"”—ldv} ” </Q|Vde,
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V(Q)¥

flav < 5085 [ vsiav

/Q 3.(Q) Jq

Again, by the Holder inequality, we have

(2.6)
/Vf|dV=p/ |u|p1|Vu|e“’dV+/ [ulP|Vple™?dV
Q Q Q
§p{/]u|p6_“’dV} {/|Vu|pe_¢dV} —|—/|u|p|Vgoe_‘PdV. (2.7)
Q Q Q
The combination of (2.6) and (2.7) can yield
/|u|pe‘pdV
Q

VI(Q)+
<

()
J.(2

)

p{/u|pe“’dV} {/|Vu|”e“"dV} +/|u|p|Vgpe“"dV ,
Q Q Q
this inequality implies

{/ |VulPe=?dV}»
Q

> e
ulPe=* P \V( v °)
{/Q Peedv)

from this inequality and (1.2), it is obvious that

{/ |VulPe #dV}s
Me(2) = min f2

u€Wy P ()

>
o ([ Juresavys
Q
which completes the proof.

{ [ |VulPe*dV}s
Ape(§)) =  min <
u€Wy P ()

uZ0

Remark 2.9 It is obvious that, if we take v = oo, then from (2.4) we have

{ [ |ulPe?aV}s
Q

1/ 3,0
th<‘5'/( )

1
-C.) =1 @) - o).
p
Euclidean space R™. Then

Corollary 2.10 Let  be a connected domain with smooth boundary 0f) in the

(2.8)
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where w,, denotes the volume of the unit ball in R™.
Proof It is well known that
In(Q) = nwyy

for any domain 2 C R™, where w,, denotes the volume of the unit ball in R™. From this fact

n w g
Q) >— i —nC
A= ((vm)) " )
which completes the proof.

Example 1 If Q = B, (R) is a ball in R” with radius R, then the volume of § is
V() = w,R", and we can get

and (2.4), we can get

SASIC

A

1 n(1
App(82) 2 ? <R - nC@)
directly by (2.8). Since any ball is trivial Cheeger set (see [2]), by simply calculation, we can
obtain

A0Q) n

h(€2) = Vo) R

from inequality (2.2), thus, we can get the same inequality as above.
Example 2 Let S™ be a unit sphere with sectional curvature 1, and Q C S™ (small
enough) be a relatively compact domain with smooth boundary 9. Then the Ricci curvature

of S™is n—1. From [17, Theorem 1.4], we know that for any connected domain Q C S™, n =
27 37 47 57

A(09) 1 2\ 7
7( )1 > nwyy (1 —TV(Q)W) ,
V(Q)ti-=
where 7 = %"= According to Definition 2.1, we derive
2(n+2)w

=

2 n
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