|
摘要: |
本文研究Q2-P1混合元对Stokes型积分-微分方程的有限元方法.利用积分恒等式技巧给出了关于流体速度u和压力p的误差估计,特别是在压力p的误差中去掉了影响解的稳定性的因子t-½,改善了以往文献的结果.同时,通过构造适当的插值后处理算子得到了整体超收敛结果. |
关键词: Stokes型积分-微分方程 Q2-P1混合元 插值后处理 超逼近和超收敛 |
DOI: |
分类号:O242.21 |
基金项目:国家自然科学基金资助(11101381;11271340);教育部高等学校博士学科专项基金资助(2009410111006) |
|
SUPERCONVERGENCE ANALYSIS OF Q2-P1 MIXED ELEMENT SOLUTION TO STOKES TYPE INTEGRO-DIFFERENTIAL EQUATIONS |
NIU Yu-qi,SHI Dong-yang
|
Abstract: |
The Q2-P1 mixed finite element method is discussed for the Stokes type integro-differential equations. The error estimations of fluid velocity u and pressure p are given by the integral identity technique. Especially, in the estimation of pressure p the factor t-½ which influences the stability of solution is removed and thus the existing results are improved accordingly. At the same time, the global superconvergence of order is derived based on the interpolation postprocessing approach. |
Key words: Stokes type integro-differential equations Q2-P1 mixed finite element postprocessing supercloseness and superconvergence |