|
摘要: |
本文研究了双三次Hermite 矩形元的超收敛问题. 利用双线性引理和Bramble-Hilbert引理, 在无正则性条件的假设下, 得到了双三次Hermite 矩形元的自然超收敛性及点态超收敛性结果.该结论与传统的有限元正则条件下的结论一致; 与传统的超收敛分析方法-积分恒等式法相比, 本文的方法既简单又便于推广. |
关键词: 双三次Hermite元 点态超收敛性 各向异性 |
DOI: |
分类号:O241.82 |
基金项目:国家自然科学基金项目资助(11201122) |
|
THE SUPERCONVERGENCE AND POINTWISE SUPERCONVERGENCE OF THE ANISOTROPIC BICUBIC HERMITE RECTANGULAR ELEMENT |
WANG Pan-zhou,SUN Hui-xia,ZHANG Shuai
|
Abstract: |
In this paper, the superconvergence of the bicubic Hermite rectangular element is researched. By using bilinear lemma and Bramble-Hilbert lemma, the natural superconvergence and pointwise superconvergence of this element are obtained in the absence of regular condition, which are consistent with the traditional conclusion. Compared with the traditional integral identities method, the method in this paper is simple and convenient. |
Key words: bicubic Hermite element pointwise superconvergence anisotropic |