| 摘要: |
| 本文研究了高阶代数微分方程解的增长级的问题.利用亚纯函数的Nevanlinna值分布理论和微分方程的一些技巧,得到了一个更精确和更一般的结论,推广了何育赞和Laine的一些理论. |
| 关键词: 增长级 代数体函数 代数微分方程 |
| DOI: |
| 分类号:O174.52 |
| 基金项目:Supported by NSF of China (10471065);the Natural Science Foundation of Guangdong Province (04010474). |
|
| ON THE GROWTH OF SOLUTIONS OF HIGHER-ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS |
|
LI Xiong-ying
|
|
College of Economics, Jinan University, Guangzhou 510632, China
|
| Abstract: |
| This paper investigates the problem of the growth of solution of higher-order algebraic differential equations. Using the Nevanlinna value distribution theory of meromorphic functions and some skills of differential equations theory, we obtain a result which is more precise and more general, and extend the theories of He and Laine. |
| Key words: the growth algebroid function algebraic differential equations |