| 摘要: |
| 文研究了四阶伪抛物型方程ut+△2u+α△u-ω△ut=|u|q-1u初边值问题解的存在性.利用势阱方法,在低初始能量J(u0)< d时,给出该问题解的全局存在和爆破的阈值条件.同时,估计了爆破解的爆破时间上界. |
| 关键词: 伪抛物型方程 全局存在 爆破 爆破时间 |
| DOI: |
| 分类号:O175.4 |
| 基金项目:国家自然科学基金资助(12101482),陕西省自然科学基金资助(2021JQ-495). |
|
| BLOW-UP PHENOMENA FOR FOURTH ORDER PESUDO-PARABOLIC EQUATION |
|
YANG Chun-xiao, DUAN Chen-yan
|
|
School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, China
|
| Abstract: |
| This paper considers a initial-boundary value problem for four-order pesudoparabolic equation ut + △2u + α△u - ω△ut = |u|q-1u. By applying potential well argument, we obtain the global existence and blow-up of solutions for the low initial energy J(u0) < d. Meanwhile, the upper bound of blow-up time is estimated. |
| Key words: pesudo-parabolic equation global existence blow-up blow-up time |