|
摘要: |
本文在单位圆盘上给出了调和Zygmund型空间$\mathcal{Z}_{\mathcal{H}}^{\alpha}(\alpha>1)$到调和Bloch型空间$\mathcal{B_{\mathcal{H}}^{\beta}}(0<\beta <\infty)$的复合算子$C_{\varphi}$的有界性与紧性的充分必要判别条件,进而建立了复合算子差分$C_{\varphi}-C_{\psi}: \mathcal{Z}_{\mathcal{H}}^{\alpha} \rightarrow \mathcal{B_{\mathcal{H}}^{\beta}}$的有界性与紧性的等价刻画. |
关键词: 差分 复合算子 调和Zygmund型空间 调和Bloch型空间 |
DOI: |
分类号:O177.2 |
基金项目: |
|
Differences of composition operators from harmonic Zygmund-type spaces to harmonic Bloch-type spaces |
liuxinyu,liangyuxia
|
Abstract: |
The paper investigates a necessary and sufficient condition for the bounded and compact composition operator from harmonic Zygmund-type spaces $\mathcal{Z}_{\mathcal{H}}^{\alpha}(\alpha>1)$ into harmonic Bloch-type spaces $\mathcal{B_{\mathcal{H}}^{\beta}}(0<\beta <\infty)$ on the unit disk. Furthermore, several equivalent conditions for the boundedness and compactness of the difference of composition operators $C_{\varphi}-C_{\psi}: \mathcal{Z}_{\mathcal{H}}^{\alpha} \rightarrow \mathcal{B_{\mathcal{H}}^{\beta}}$ are presented. |
Key words: differences composition operator harmonic Zygmund-type space harmonic Bloch-type space |