|
摘要: |
本文考虑定义在$\textbf{R}_{+} × [ 0, 1 ]^d$上具有高频振荡随机位势, 带齐次Neumann边界条件的半线性抛物型随机偏微分方程组(SPDEs)的齐次化问题, 其中$d =1,2$或$3$, 利用正则结构理论, 主要结论是方程组的解将依概率收敛到一个确定性抛物型PDEs的解. |
关键词: 半线性抛物型SPDEs 高频振荡 齐次化问题 正则结构 |
DOI: |
分类号:O211.63 |
基金项目:浙江省自然科学基金(LY20A010010) |
|
HOMOGENIZATION PROBLEM OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS |
sun zi jian,ma fei yao
|
Abstract: |
In this paper, we consider the homogenization problem of semilinear parabolic stochastic partial differential equations ( SPDEs ) with homogeneous Neumann boundary conditions defined on $\textbf{R}_{+} × [ 0, 1 ]^d$ with high-frequency oscillatory random potential, where $d =1,2$ or $ 3 $, by using regularity structures, the main conclusion is that the solution of the system of equations will converge to the solution of a deterministic parabolic PDEs in probability. |
Key words: semilinear parabolic SPDEs high-frequency oscillatory homogenization problem regularity structures |