引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
过刊浏览    高级检索
本文已被:浏览 102次   下载 0  
分享到: 微信 更多
半线性随机偏微分方程组的齐次化问题
孙子健1, 马飞遥2
1.宁波大学数学与统计学院;2.宁波大学
摘要:
本文考虑定义在$\textbf{R}_{+} × [ 0, 1 ]^d$上具有高频振荡随机位势, 带齐次Neumann边界条件的半线性抛物型随机偏微分方程组(SPDEs)的齐次化问题, 其中$d =1,2$或$3$, 利用正则结构理论, 主要结论是方程组的解将依概率收敛到一个确定性抛物型PDEs的解.
关键词:  半线性抛物型SPDEs  高频振荡  齐次化问题  正则结构
DOI:
分类号:O211.63
基金项目:浙江省自然科学基金(LY20A010010)
HOMOGENIZATION PROBLEM OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS
sun zi jian,ma fei yao
Ningbo university
Abstract:
In this paper, we consider the homogenization problem of semilinear parabolic stochastic partial differential equations ( SPDEs ) with homogeneous Neumann boundary conditions defined on $\textbf{R}_{+} × [ 0, 1 ]^d$ with high-frequency oscillatory random potential, where $d =1,2$ or $ 3 $, by using regularity structures, the main conclusion is that the solution of the system of equations will converge to the solution of a deterministic parabolic PDEs in probability.
Key words:  semilinear parabolic SPDEs  high-frequency oscillatory  homogenization problem  regularity structures