| 摘要: | 
	         
			 
		     | 本文研究了导数哈代空间中的代数结构问题, 利用[6,12,15]中方法,得到了Duhamel乘积在导数哈代空间中构成巴拿赫代数以及可逆的充要条件,并且刻画了积分算子V的 拓展特征值.推广了[1,2,6,11,16]中的结果. | 
	         
			
	         
				| 关键词:  Duhamel乘积  巴拿赫代数  拓展特征值 | 
	         
			 
                | DOI: | 
           
            
                | 分类号:O177.5 | 
             
			 
             
                | 基金项目: | 
             
           | 
           
                | BANACH ALGEBRA STRUCTURE IN DERIVATIVE HARDY SPACES | 
           
           
			
                | 
				
				ZHANG Zhao-de, LIU Jun-ming
						
				
				 | 
           
           
		   
		   
                | 
				
				School of Mathematics and Statistics, Guangdong University of Technology, Guangdong 510006, China
				
				 | 
           
		   
             
                | Abstract: | 
              
			
                | In this paper, we consider the algebraic structure of derivative Hardy Spaces. By using the method of [6,12,15], we get the Duhamel product forming Banach algebra in derivative Hardy Spaces, and invertibility criterion, and describe the extended eigenvalue of the integral operator V. We generalize the results in [1,2,6,11,16]. | 
            
	       
                | Key words:  Duhamel product  banach algebra  extended eigenvalue |