|
摘要: |
本文研究了导数哈代空间中的代数结构问题, 利用[6,12,15]中方法,得到了Duhamel乘积在导数哈代空间中构成巴拿赫代数以及可逆的充要条件,并且刻画了积分算子V的 拓展特征值.推广了[1,2,6,11,16]中的结果. |
关键词: 乘积 巴拿赫代数 拓展特征值 |
DOI: |
分类号:O177.5 |
基金项目: |
|
BANACH ALGEBRA STRUCTURE IN DERIVATIVE HARDY SPACES |
ZHANG Zhao-de,LIU Jun-ming
|
Abstract: |
In this paper, we consider the algebraic structure of derivative Hardy Spaces. By using the method of [6,12,15], we get the Duhamel product forming Banach algebra in derivative Hardy Spaces, and invertibility criterion, and describe the extended eigenvalue of the integral operator V. We generalize the results in [1,2,6,11,16]. |
Key words: Duhamel product banach algebra extended eigenvalue |