|
摘要: |
我们将齐型空间上的Ap理论的最优权有界性推广到了平均算子和Calderón-Zygmund算子的q变差.这些结果利用了Lorist和Omisboand在齐型空间上给出的新的稀疏控制技术[1]以及[2].最后我们还讨论了这些理论的应用. |
关键词: 最优权估计 q变差不等式 Calderó n-Zygmund算子 稀疏算子 齐型空间 |
DOI: |
分类号:O174.2 |
基金项目: |
|
SHARP WEIGHTED ESTIMATES FOR Q-VARIATIONS OF SINGULAR OPERATORS ON THE SPACES OF HOMOGENEOUS TYPE |
GONG Chen-xi
|
Abstract: |
In this work we extend the theorems of the sharp Ap weights to the q-variation of average operators and Calderón-Zygmund operators on the spaces of homogeneous type. These results make use of the new sparse dominating techniques given by Lerner and Omisboand on Euclidean spaces [1], and Lorist [2] in the setting of homogeneous spaces. In particular, we establish the sparse pointwise estimates for the parabolic operators.At last, we also discuss some applications of our theorems. |
Key words: sharp weighted estimates q-variational inequalities Calderó n-Zygmund operators sparse operators |