引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 505次   下载 759 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Heisenberg群上由加权次椭圆p-Laplace不等方程导出的Hardy型不等式及应用
张君丽
作者单位
张君丽 西北工业大学数学与统计学院, 陕西 西安 710129 
摘要:
本文研究Hardy型不等式及它的应用.首先从Heisenberg群上加权次椭圆p-Laplace不等方程出发,得到非负Lipschitz函数的Caccioppoli不等式,然后利用该不等式导出了关于另一Lipschitz函数的Hardy型不等式,进而推出一个精确Hardy-Poincaré不等式.需要强调的是,我们这里的Hardy型不等式是对于1<p<∞而言的,且对无界的区域也成立.
关键词:  Heisenberg群  p-Laplace不等方程  Hardy型不等式  Lipschitz函数
DOI:
分类号:O178
基金项目:国家自然科学基金(11771354)
HARDY-TYPE INEQUALITY DERIVED FROM WEIGHTED SUB-ELLIPTIC $p$-LAPLACE INEQUALITY ON THE HEISENBERG GROUP AND ITS APPLICATION
ZHANG Jun-li
Abstract:
This paper studies Hardy-type inequality and its application. We firstly obtain the Caccioppoli inequality for nonnegative Lipschitz function from weighted sub-elliptic p-Laplace inequality. We use this inequality to derive Hardy-type inequality of another Lipschitz function, and then achieve an exact Hardy-Poincaré inequalitiy. It should be emphasized that the Hardy-type inequality here is for 1<p<∞ and also holds for unbounded regions.
Key words:  Heisenberg group  p-Laplace inequality  hardy-type inequality  Lipschitz function

美女图片

美女 美女美女 美女美女