| 摘要: | 
	         
			 
		     | 本文通过Li-Yau梯度估计的方法和Jun Sun对热方程在一般几何流下梯度估计的研究,推导出一类重要的非线性抛物方程在一般几何流演化下的梯度估计,并得到了哈拿克不等式等一些结论.推广了Wang的结果. | 
	         
			
	         
				| 关键词:  梯度估计  几何流  一种非线性抛物方程  哈拿克不等式 | 
	         
			 
                | DOI: | 
           
            
                | 分类号:O186.1 | 
             
			 
             
                | 基金项目: | 
             
           | 
           
                | GRADIENT ESTIMATE FOR A NONLINEAR PARABOLIC EQUATION UNDER GEOMETRIC FLOW | 
           
           
			
                | 
				
				WU Meng-fei
						
				
				 | 
           
           
		   
		   
                | 
				
				School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
				
				 | 
           
		   
             
                | Abstract: | 
              
			
                | In this paper, through the Li-Yau gradient estimate and Jun Sun's research on the gradient estimate of heat equation under general geometric flow, we will derive local gradient estimates for positive solutions of a nonlinear parabolic equation on Riemannian manifold under general geometric flow. These results can be regarded as a generlization of Wang's results. At the same time, we give a corresponding Harnack inequality. | 
            
	       
                | Key words:  gradient estimate  geometric flow  a nonlinear parabolic equation  Harnack inequality |