引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1251次   下载 2255 本文二维码信息
码上扫一扫!
分享到: 微信 更多
环上含参变量的Boltzmann测度的对数Sobolev不等式
程新1, 毛闰2, 张正良1
1.武汉大学数学与统计学院, 武汉 430072;2.重庆市第八中学校, 重庆 401120
摘要:
本文主要研究环上的含参变量h的Boltzmann测度μh的对数Sobolev不等式.通过降维方法以及对该不等式最佳常数CLSμh)的估计,证明了该测度关于h满足一致的对数Sobolev不等式,且对数Sobolev最佳常数CLSμh)在h > 0时是具有常数阶的.结合已有的结果,再次佐证对数Sobolev不等式严格强于Talagrand传输不等式以及Poincaré不等式.
关键词:  Boltzmann测度  对数Sobolev不等式  传输不等式  Poincaré不等式
DOI:
分类号:O177
基金项目:国家自然科学基金(NSFC11371283,11671076,11871382).
LOGARITHMIC SOBOLEV INEQUALITY ON BOLTZMANN MEASURES WITH PARAMETER ON CIRCLES
CHENG Xin1, MAO Run2, ZHANG Zheng-liang1
1.Department of Mathematics and Statistics, Wuhan University, Wuhan 430072, China;2.Chongqing No.8 Secondary School, Chongqing 401120, China
Abstract:
In this paper, we mainly study logarithmic Sobolev inequality on Boltzmann Measures with parameter h > 0 on circles. By the method of dimension-reduction and estimating the Log-Sobolev optimal constant, denoted by CLS(μh), we proved that the family of measures satisfy the uniform logarithmic Sobolev inequality in h and the optimal constant CLS(μh) has a constant order in h, which, together with the known results, enhances the claim that logarithmic Sobolev inequality is strictly stronger than Talagrand's transportation and Poincaré inequalities.
Key words:  Boltzmann measure  logarithmic Sobolev inequality  transportation inequality  Poincaré inequality