引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 635次   下载 1100 本文二维码信息
码上扫一扫!
分享到: 微信 更多
Helmholtz型方程柯西问题的修正Lavrentiev正则化方法
张宏武,张晓菊
作者单位
张宏武 北方民族大学数学与信息科学学院, 宁夏 银川 750021 
张晓菊 北方民族大学教师教学发展中心, 宁夏 银川 750021 
摘要:
本文研究了带非齐次Dirichlet及Neumann数据的一类Helmholtz型方程柯西问题.文章在解的先验假设下建立问题的条件稳定性结果,利用修正Lavrentiev正则化方法克服其不适定性,并结合正则化参数的先验与后验选取规则获得了正则化解的收敛性结果,相应的数值实验结果验证了所提方法是稳定可行的,推广了已有文献在Helmholtz型方程柯西问题正则化理论与算法方面的相关研究结果.
关键词:  不适定问题  柯西问题  Helmholtz型方程  修正Lavrentiev正则化方法  收敛性估计
DOI:
分类号:O175.25;O175.29
基金项目:Supported by the NSF of China (11761004); NSF of Ningxia (2019AAC03128).
MODIFIED LAVRENTIEV REGULARIZATION METHOD FOR THE CAUCHY PROBLEM OF HELMHOLTZ-TYPE EQUATION
Zhang Hong-wu,Zhang Xiao-ju
Abstract:
In this paper, a Cauchy problem of Helmholtz-type equation with nonhomogeneous Dirichlet and Neumann datum is researched. We establish the result of conditional stability under an a-priori assumption for exact solution. A modified Lavrentiev regularization method is used to overcome its ill-posedness, and under an a-priori and an a-posteriori selection rule for the regularization parameter we obtain the convergence result for the regularized solution, the corresponding results of numerical experiments verify that the proposed method is stable and workable, this work is an extension on the related research results of existing literature in the aspect of regularization theory and algorithm for Cauchy problem of Helmholtz-type equation.
Key words:  ill-posed problem  Cauchy problem  Helmholtz-type equation  modified Lavrentiev method  convergence estimate

美女图片

美女 美女美女 美女美女