|
摘要: |
本文研究了(n+p)维欧氏空间Rn+p中n维定向紧致无边子流形Mn的积分公式的问题.首先定义了Mn沿其单位平均曲率向量场ξ方向的高阶平均曲率Hr(0 ≤ r ≤ n);然后,利用活动标架与外微分法,获得了关于Mn的一个新的积分公式.新公式推广了余维数p=1即超曲面情况下的经典积分公式. |
关键词: 欧氏空间 紧致无边子流形 平均曲率向量场 高阶平均曲率 积分公式 |
DOI: |
分类号:O186.16 |
基金项目:Supported by the Special Funding of Guiyang Science and Technology Bureau and Guiyang University (GYU-KYZ[2019-2020]). |
|
INTEGRAL FORMULAS FOR COMPACT SUBMANIFOLDS IN EUCLID SPACE |
WANG Qi,ZHOU Zhi-jin
|
Abstract: |
In this paper, we study the problem of integral formulas for an oriented and compact n-dimension isometric immersion submanifold Mn without boundary in the (n+p)-dimension euclid space Rn+p. At first, we define the r-th higher order mean curvature Hr (0 ≤ r ≤ n) along the direction of the unit mean curvature vector field ξ to Mn, and then we attain a new integral formula, by applying the method of moving frame and exterior differential, which generalizes a classical integral formula in the case of codimension p=1, that is in the case of hypersurfaces. |
Key words: euclid space compact submanifold without boundary mean curvature vector field higher order mean curvature integral formula |