| 摘要: |
| 本文研究了二进制变指数强型和弱型鞅空间的原子分解理论.利用原子分解的方法,给出次线性算子T是wHp(·)s到wLp(·)有界;Cesàro算子是Hp(·)到Lp(·)有界以及是Lp(·)到Lp(·)有界.上述结论推广了常指数情况下算子有界性的结果. |
| 关键词: 原子分解 变指数 Cesàro算子 |
| DOI: |
| 分类号:O211.5 |
| 基金项目:Supported by National Natural Science Foundation of China (11871195). |
|
| WEAK AND STRONG DYADIC MARTINGALE SPACES WITH VARIABLE EXPONENTS |
|
ZHANG Chuan-zhou, WANG Jiu-feng, ZHANG Xue-ying
|
|
College of Science, Wuhan University of Science and Technology, Wuhan 430065, China
|
| Abstract: |
| In this paper, we study the atomic decompositions of weak and strong dyadic martingale spaces with variable exponents. By atomic decompositions, we prove that sublinear operator T is bounded from wHp(·)s to wLp(·); Cesàro operator is bounded from Hp(·) to Lp(·) and from Lp(·) to Lp(·), which generalize the boundedness of operators in constant exponent case. |
| Key words: atomic decompositions variable exponents Cesàro operator |