| 本文已被:浏览 1112次   下载 1710次 | 
			 
                  码上扫一扫! | 
                
			 
			 
                | 
				 
 
				
				 | 
            
           
			
				| 复反射群G(m,p,r)的陪集分解 | 				
 
			 
           
			
                | 
				徐静蕾1,2, 王彦杰1,3, 王丽1
								
				 | 				
            
		  
           
		   
		   
                | 
				1.上海师范大学数理学院, 上海, 200234;2.上海大学附属中学, 上海, 200444;3.常熟中学, 江苏, 常熟, 215516
				 | 
            
		   
 
		    | 
			
             			 
		     | 摘要: | 
	         
			 
		     | 本文研究了非本原复反射群G(m,p,r)的右陪集分解,其中m,p,r是正整数,且p整除m.通过使用GAP软件计算一些当m,p,r取较小自然数时的特例,推导出了一般情形下,非本原复反射群G(m,p,r)的抛物型子群G(m,p,r-1)的一个完全的右陪集代表元集,这个结果为进一步研究G(m,p,r-1)在G(m,p,r)中的特异右陪集代表元集打下基础. | 
	         
			
	         
				| 关键词:  右陪集代表  非本原复反射群 | 
	         
			 
                | DOI: | 
           
            
                | 分类号:O152.3 | 
             
			 
             
                | 基金项目: | 
             
           | 
           
                | ON COSET DECOMPOSITIONS OF THE COMPLEX REFLECTION GROUPS G(M, P, R) | 
           
           
			
                | 
				
				XU Jing-lei1,2, WANG Yan-jie1,3, WANG Li1
						
				
				 | 
           
           
		   
		   
                | 
				
				1.School of Mathematics and Science, Shanghai Normal University, Shanghai 200234, China;2.The A-liated High School of Shanghai University, Shanghai 200444, China;3.Changshu High School, Changshu 215516, China
				
				 | 
           
		   
             
                | Abstract: | 
              
			
                | We study the decomposition of the imprimitive complex reflection group G(m, p, r) into right coset, where m, p, r are positive integers, and p divides m. By use of the software GAP to compute some special cases when m, p, r are small integers, we deduce a set of complete right coset representatives of the parabolic subgroup G(m, p, r-1) in the group G(m, p, r) for general cases, which lays a foundation for further study the distinguished right coset representatives of G(m, p, r-1) in G(m, p, r). | 
            
	       
                | Key words:  right coset representatives  imprimitive complex reflection groups |