|
摘要: |
本文研究了四类双漂移拉普拉斯算子的特征值问题.利用带权Reilly公式,当m-权重Ricci曲率满足一定条件时,得到了紧致带边光滑度量测度空间上四类双漂移拉普拉斯算子的第一非零特征值的最优估计.推广了双调和算子特征值的相应结果. |
关键词: 特征值 漂移拉普拉斯 光滑度量测度空间 m-权重Ricci曲率 Steklov问题 |
DOI: |
分类号:O186.1 |
基金项目:Supported by Scientific Research Foundation of Hubei Provincial Department of Education (D20184301) and the Hubei Key Laboratory of Applied Mathematics (Hubei University). |
|
SHARP ESTIMATES FOR EIGENVALUES OF BI-DRIFTING LAPLACIAN |
LI Yan-li,DU Feng
|
Abstract: |
In this paper, we study the four types of eigenvalue problems for the bi-drifting Laplacian. By using the weighted Reilly formula, we get some sharp lower bounds for the first nonzero eigenvalue for these eigenvalue problems on compact smooth metric measure spaces with boundary and under some condition on the m-weighted Ricci curvature, which generalize the corresponding results for the eigenvalues of biharmonic operator. |
Key words: eigenvalues drifting Laplacian smooth metric measure spaces m-weighted Ricci curvature Steklov problem |