引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 435次   下载 2350 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于核的L2,1范数非负矩阵分解在图像聚类中的应用
余江兰,李向利,董晓亮
作者单位
余江兰 桂林电子科技大学数学与计算科学学院; 广西密码学与信息安全重点实验室;广西自动检测技术与仪器重点实验室, 广西 桂林 541004 
李向利 桂林电子科技大学数学与计算科学学院; 广西密码学与信息安全重点实验室;广西自动检测技术与仪器重点实验室, 广西 桂林 541004 
董晓亮 北方民族大学数学与信息科学学院, 宁夏 银川 750021 
摘要:
本文研究了基于核技巧的L2,1范数非负矩阵分解在图像聚类中的问题.利用基于核的稀疏鲁棒非负矩阵分解方法,获得了算法良好的稀疏性和鲁棒性,提高了聚类性能,该方法也可以推广到文本聚类的应用.
关键词:  非负矩阵分解  核技巧  L2,1范数  稀疏性  鲁棒性
DOI:
分类号:O235
基金项目:国家自然科学基金(11601012;71561008);广西自然科学基金(2018GXNSFAA138169);广西密码学与信息安全重点实验室研究课题(GCIS201708);广西自动检测技术与仪器重点实验室基金(YQ16112;YQ18112);宁夏自然科学基金(NZ17103);桂林电子科技大学研究生优秀学位论文培育项目资助(16YJPYSS22).
KERNEL-BASED L2,1 NORM NON-NEGATIVE MATRIX FACTORIZATION IN IMAGE CLUSTERING
YU Jiang-lan,LI Xiang-li,DONG Xiao-liang
Abstract:
The problem of norm non-negative matrix factorization with L2,1 is studied based on kernel technique in image clustering. By kernel-based sparse robust non-negative matrix factorization method, the sparseness and robustness of the algorithm are obtained, and the clustering performance is improved. This method can also be extended to the application of text clustering.
Key words:  non-negative matrix factorization  kernel trick  L2,1 norm  sparsity  robustness

美女图片

美女 美女美女 美女美女