|
摘要: |
设D > 1是正整数,p是适合p|D的素数.本文研究了指数Diophantine方程x2=D2m-Dmpn+p2n的满足m > 1的正整数解.根据Diophantine方程的性质,结合已有的结论,运用初等方法确定了方程满足m > 1的所有正整数解(D,p,x,m,n).这个结果修正并完整解决了文献[4]的猜想. |
关键词: 指数Diophantine方程 正整数解 初等方法 |
DOI: |
分类号:O156.7 |
基金项目:陕西省科技厅项目(2013JQ1019);延安大学自然科学基金项目(YDK201101). |
|
ON THE EXPONENTIAL DIOPHANTINE EQUATION x2=D2m -Dmpn + p2n |
HE Yan-feng
|
Abstract: |
Let D be a positive integer with D > 1, and p be a prime with p|D. In this paper, we study the positive integer solutions of the Diophantine equation x2=D2m-Dmpn + p2n with m > 1. By using properties and several known results of Diophantine equations with some elementary methods, all positive integer solutions (D, P, x, m, n) of the equations x2=D2m-Dmpn + p2n are determined, which corrects and completely solves the presumption in[4]. |
Key words: exponential Diophantine equation positive integer solution elementary method |