引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1445次   下载 1253 本文二维码信息
码上扫一扫!
分享到: 微信 更多
关于齐次Carnot群上广义Morrey空间中一些性质
龙品红,韩惠丽
作者单位
龙品红 宁夏大学数学计算机学院, 宁夏 银川 750021 
韩惠丽 宁夏大学数学计算机学院, 宁夏 银川 750021 
摘要:
本文研究了关于Heisenberg群上的广义Morrey空间和Carnot群上的Lebesgue空间中Riesz位势算子或者分数阶极大算子的行为.根据Heisenberg群中抽象调和分析方法以及subLaplacian算子的Dirichlet问题解的表示公式,本文主要给出了关于齐次Carnot群G上消失的广义Morrey空间VLp,ψ(G)中的加权Hardy算子、分数阶极大算子和分数阶位势算子的有界性刻画.进而也得到无消失模的广义Morrey空间上Morrey位势的浸入不等式.所有这些结果推广了关于Heisenberg群上的广义Morrey空间和Carnot群上的Lebesgue空间中的相关结论.
关键词:  Carnot群  加权Hardy算子  分数阶极大算子  分数阶位势算子  广义Morrey空间
DOI:
分类号:O174.2;O177.5;O152.8
基金项目:Supported by Natural Science Foundations of China (11261041; 11271045; 11461053); Natural Science Foundations of Ningxia (NZ15055); Research Starting Funds for Imported Talents of Ningxia University.
SOME PROPERTIES IN THE GENERALIZED MORREY SPACES ON HOMOGENOUS CARNOT GROUPS
LONG Pin-hong,HAN Hui-li
Abstract:
In this paper, the behaviors for the Riesz potential or fractional maximal operator in the generalized Morrey spaces on the Heisenberg group and the Lebesgue spaces on the Carnot group are studied. According to the methods of abstract harmonic analysis in Heisenberg group and the representation formula of solution of Dirichlet problem for subLaplacian, we mainly give some characterizations for the boundedness of the weighted Hardy operator, fractional maximal operator and fractional potential operator in the vanishing generalized Morrey space VLp,ψ(G) on homogenous Carnot group G. Moreover, we also obtain the embedding inequality for Morrey potentials in such these spaces without vanishing norm. All these results above generalize the related ones in the generalized Morrey spaces on the Heisenberg group and the Lebesgue spaces on the Carnot group.
Key words:  Carnot group  weighted Hardy operator  fractional maximal operator  potential operator  generalized Morrey space

美女图片

美女 美女美女 美女美女