|
摘要: |
本文研究了具有幂零奇点的七次Hamilton系统的Abel积分的零点个数问题.利用Picard-Fuchs方程法,得到了Abel积分I(h)=∫Γh g(x,y)dx-f(x,y)dy在(0,1/4)上零点个数B(n)≤ 3[(n-1)/4],其中Γh是H(x,y)=x4+y4-x8=h,h ∈(0,1/4),所定义的卵形线f(x,y)=∑1≤4i+4j+1≤naijx4i+1y4j和g(x,y)=∑1≤4i+4j+1≤nbijx4iy4j+1是x和y的次数不超过n的多项式. |
关键词: Hamilton系统 幂零奇点 Abel积分 Picard-Fuchs方程 |
DOI: |
分类号:O175 |
基金项目:国家自然科学基金(11701306);宁夏师范学院重点科研项目(NXSFZD1708;NXSFZD1606). |
|
ON THE NUMBER OF ZEROS FOR ABEL INTEGRALS OF HAMILTON SYSTEM OF SEVEN DEGREE WITH NILPOTENT SINGULARITIES |
MA Hui-long,YANG Ji-hua
|
Abstract: |
In this paper, we study the number of zeros for Abel integrals of Hamilton system of seven degree with nilpotent singularities. By using the Picard-Fuchs equation method, we derive that the number of zeros of Abel integrals I(h)=∫Γh g(x,y)dx-f(x,y)dy on the open interval (0, 1/4) is at most 3[(n-1)/4], where Γh is an oval lying on the algebraic curve H(x,y)=x4+y4-x8=h,h ∈(0,1/4), f(x,y)=∑1≤4i+4j+1≤naijx4i+1y4j and g(x,y)=∑1≤4i+4j+1≤nbijx4iy4j+1 are polynomials of x and y of degrees not exceeding n. |
Key words: Hamilton system nilpotent singularity Abel integral Picard-Fuchs equation |