| 摘要: |
| 本文研究了一类1 < α < 2非局部条件下的脉冲分数阶偏微分方程mild解的存在性问题.利用解算子的相关性质及Krasnoselskii不动点理论的方法,获得了这类方程的mild解并予以证明,且得到了解的存在性结果. |
| 关键词: mild解 分数阶微分方程 非局部条件 不动点理论 |
| DOI: |
| 分类号:O175.2 |
| 基金项目:Supported by Hunan Provincial Natural Science Foundation of China (14JJ2050). |
|
| THE EXISTENCE OF MILD SOLUTIONS FOR IMPULSIVE FRACTIONAL DIFIERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS OF ORDER 1 < α < 2 |
|
SHI Ya-jing, ShU Xiao-bao
|
|
College of Mathematics and Econometrics, Hunan University, Changsha 410082, China
|
| Abstract: |
| This paper is concerned with the existence of mild solutions for impulsive fractional differential equations with nonlocal conditions of order 1 < α < 2. Using the properties of solution operators and Krasnoselskii's fixed point theorem, we obtain the mild solution of the equations which is proved and its existence results. |
| Key words: mild solutions fractional differential equations nonlocal conditions fixed point theorem |