| 摘要: | 
			 
		     | 本文研究了具有随机扰动的统一混沌系统的有限时间同步问题,其中随机扰动是一维标准的维纳随机过程.利用了有限时间随机李雅普诺夫稳定性理论、伊藤公式,本文分三个步骤设立了三个控制器获得了驱动{响应系统在有限时间内的均方渐近同步.最后进行的数值模拟验证了理论结果的正确性和方法的有效性. | 
			
	         
				| 关键词:  随机扰动  统一混沌系统  有限时间同步  伊藤公式  李雅普诺夫稳定性理论 | 
			 
                | DOI: | 
            
                | 分类号:O231.3 | 
			 
             
                | 基金项目:冶金工业过程系统科学湖北省重点实验室开放基金资助(Y201412);湖北省自然科学基金资助(22013CFA131). | 
          |  | 
           
                | FINITE-TIME SYNCHRONIZATION OF UNIFLED CHAOTIC SYSTEM WITH STOCHASTIC PERTURBATION | 
           
			
                | WANG Jiao, Tu Li-lan, Zhu Ze-fei | 
           
		   
		   
                | Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430065, China | 
		   
             
                | Abstract: | 
			
                | In this paper, finite-time synchronization of the unified chaotic system with stochastic perturbation is investigated, in which the perturbation is a Wiener process of onedimensional standards. Based on finite-time stochastic Lyapunov stability theory and Ito formula, three steps are presented to consecutively design three controllers to guarantee the finite-time mean-square asymptotical synchronization of the drive-response systems. Finally, numerical simulations are provided to illustrate the correctness and efiectiveness of the theoretical results. | 
	       
                | Key words:  stochastic perturbation  unified chaotic system  finite-time synchronization  Ito formula  Lyapunov stability theory |