| 摘要: |
| 本文引入了BL-代数的⊙-导子并研究了BL-代数上⊙-导子的相关问题.利用导子的保序性,不动点集和BL-代数的格理想,讨论了BL-代数上的保序∧-导子和保序⊙-导子的关系,并给出了Gödel代数和线性Gödel代数的刻画.这些结果丰富了逻辑代数上的导子理论. |
| 关键词: BL-代数 ⊙-导子 格理想 Gödel 代数 |
| DOI: |
| 分类号:O141.1 |
| 基金项目:西北大学研究生高水平成果资助项目(YC13055). |
|
| ON ⊙-DERIVATIONS OF BL-ALGEBRAS |
|
XIN Xiao-long, FENG Min, YANG Yong-wei
|
|
Department of Mathematics, Northwest University, Xi'an 710127, China
|
| Abstract: |
| In the paper, the ⊙-derivations of BL-algebras is introduced and investigated. By using the isotone property, the flxed set and lattice ideal, the relationship between an isotone ∧-derivation and an isotone ⊙-derivation is discussed, and the characterizations of Gödel algebras and liner Gödel algebras are given, which extends the derivation theory of logic algebras. |
| Key words: BL-algebra ⊙-derivation lattice ideal Gödel algebra |