| 摘要: |
| 本文研究了矩阵空间到自身的满数值半径等距问题. 利用等距嵌入方法, 获得了自共轭矩阵空间单位球面到自身的满数值半径等距可实线性延拓至全空间上的满数值半径等距, 为Tingley等距延拓问题提供了一种方法. |
| 关键词: 数值域 数值半径 等距 |
| DOI: |
| 分类号:O177.2 |
| 基金项目:Supported by National Natural Science Foundation of China(10671182). |
|
| SURJECTIVE NUMERICAL RADIUS ISOMETRY ON S(Hn) |
|
LI Bing, XIA Ai-sheng, HU Bao-an
|
|
General Courses Department, Military Transportation University, Tianjin 300161, China
|
| Abstract: |
| In this article, we study the numerical radius isometry on matrix spaces. By using isometric embedding, we obtain surjective numerical radius isometry from the unit sphere of self-adjoint matrix space onto itself can be real-linear extended to the whole space, and give a method of Tingley isometric extension problem. |
| Key words: numerical range numerical radius isometry |